» Articles » PMID: 36264986

Automatic Extraction of Upper-limb Kinematic Activity Using Deep Learning-based Markerless Tracking During Deep Brain Stimulation Implantation for Parkinson's Disease: A Proof of Concept Study

Overview
Journal PLoS One
Date 2022 Oct 20
PMID 36264986
Authors
Affiliations
Soon will be listed here.
Abstract

Optimal placement of deep brain stimulation (DBS) therapy for treating movement disorders routinely relies on intraoperative motor testing for target determination. However, in current practice, motor testing relies on subjective interpretation and correlation of motor and neural information. Recent advances in computer vision could improve assessment accuracy. We describe our application of deep learning-based computer vision to conduct markerless tracking for measuring motor behaviors of patients undergoing DBS surgery for the treatment of Parkinson's disease. Video recordings were acquired during intraoperative kinematic testing (N = 5 patients), as part of standard of care for accurate implantation of the DBS electrode. Kinematic data were extracted from videos post-hoc using the Python-based computer vision suite DeepLabCut. Both manual and automated (80.00% accuracy) approaches were used to extract kinematic episodes from threshold derived kinematic fluctuations. Active motor epochs were compressed by modeling upper limb deflections with a parabolic fit. A semi-supervised classification model, support vector machine (SVM), trained on the parameters defined by the parabolic fit reliably predicted movement type. Across all cases, tracking was well calibrated (i.e., reprojection pixel errors 0.016-0.041; accuracies >95%). SVM predicted classification demonstrated high accuracy (85.70%) including for two common upper limb movements, arm chain pulls (92.30%) and hand clenches (76.20%), with accuracy validated using a leave-one-out process for each patient. These results demonstrate successful capture and categorization of motor behaviors critical for assessing the optimal brain target for DBS surgery. Conventional motor testing procedures have proven informative and contributory to targeting but have largely remained subjective and inaccessible to non-Western and rural DBS centers with limited resources. This approach could automate the process and improve accuracy for neuro-motor mapping, to improve surgical targeting, optimize DBS therapy, provide accessible avenues for neuro-motor mapping and DBS implantation, and advance our understanding of the function of different brain areas.

Citing Articles

Phenotypic analysis of ataxia in spinocerebellar ataxia type 6 mice using DeepLabCut.

Piotrowski D, Clemensson E, Nguyen H, Mark M Sci Rep. 2024; 14(1):8571.

PMID: 38609436 PMC: 11014858. DOI: 10.1038/s41598-024-59187-0.


Smartphone video nystagmography using convolutional neural networks: ConVNG.

Friedrich M, Schneider E, Buerklein M, Taeger J, Hartig J, Volkmann J J Neurol. 2022; 270(5):2518-2530.

PMID: 36422668 PMC: 10129923. DOI: 10.1007/s00415-022-11493-1.

References
1.
Arent I, Schmidt F, Botsch M, Durr V . Marker-Less Motion Capture of Insect Locomotion With Deep Neural Networks Pre-trained on Synthetic Videos. Front Behav Neurosci. 2021; 15:637806. PMC: 8100444. DOI: 10.3389/fnbeh.2021.637806. View

2.
Richards M, Marder K, Cote L, Mayeux R . Interrater reliability of the Unified Parkinson's Disease Rating Scale motor examination. Mov Disord. 1994; 9(1):89-91. DOI: 10.1002/mds.870090114. View

3.
Stenum J, Cherry-Allen K, Pyles C, Reetzke R, Vignos M, Roemmich R . Applications of Pose Estimation in Human Health and Performance across the Lifespan. Sensors (Basel). 2021; 21(21). PMC: 8588262. DOI: 10.3390/s21217315. View

4.
Rupprechter S, Morinan G, Peng Y, Foltynie T, Sibley K, Weil R . A Clinically Interpretable Computer-Vision Based Method for Quantifying Gait in Parkinson's Disease. Sensors (Basel). 2021; 21(16). PMC: 8399017. DOI: 10.3390/s21165437. View

5.
Munhoz R, Picillo M, Fox S, Bruno V, Panisset M, Honey C . Eligibility Criteria for Deep Brain Stimulation in Parkinson's Disease, Tremor, and Dystonia. Can J Neurol Sci. 2016; 43(4):462-71. DOI: 10.1017/cjn.2016.35. View