» Articles » PMID: 36264057

Alternative Splicing of Apoptosis Genes Promotes Human T Cell Survival

Overview
Journal Elife
Specialty Biology
Date 2022 Oct 20
PMID 36264057
Authors
Affiliations
Soon will be listed here.
Abstract

Alternative splicing occurs in the vast majority of human genes, giving rise to distinct mRNA and protein isoforms. We, and others, have previously identified hundreds of genes that change their isoform expression upon T cell activation via alternative splicing; however, how these changes link activation input with functional output remains largely unknown. Here, we investigate how costimulation of T cells through the CD28 receptor impacts alternative splicing in T cells activated through the T cell receptor (TCR, CD3) and find that while CD28 signaling alone has minimal impact on splicing, it enhances the extent of change for up to 20% of TCR-induced alternative splicing events. Interestingly, a set of CD28-enhanced splicing events occur within genes encoding key components of the apoptotic signaling pathway; namely caspase-9, Bax, and Bim. Using both CRISPR-edited cells and antisense oligos to force expression of specific isoforms, we show for all three of these genes that the isoform induced by CD3/CD28 costimulation promotes resistance to apoptosis, and that changes in all three genes together function combinatorially to further promote cell viability. Finally, we show that the JNK signaling pathway, induced downstream of CD3/CD28 costimulation, is required for each of these splicing events, further highlighting their co-regulation. Together, these findings demonstrate that alternative splicing is a key mechanism by which costimulation of CD28 promotes viability of activated T cells.

Citing Articles

Immediate early splicing controls translation in activated T-cells and is mediated by hnRNPC2 phosphorylation.

Drozdz M, Zuvanov L, Sasikumar G, Bose D, Bruening F, Robles M EMBO J. 2025; .

PMID: 39948410 DOI: 10.1038/s44318-025-00374-8.


Full-length mRNA sequencing resolves novel variation in 5' UTR length for genes expressed during human CD4 T-cell activation.

Woolley C, Chariker J, Rouchka E, Ford E, Hudson E, Rasche K Immunogenetics. 2025; 77(1):14.

PMID: 39904916 PMC: 11794378. DOI: 10.1007/s00251-025-01371-1.


Alternative splicing of modulatory immune receptors in T lymphocytes: a newly identified and targetable mechanism for anticancer immunotherapy.

Tzaban S, Stern O, Zisman E, Eisenberg G, Klein S, Frankenburg S Front Immunol. 2025; 15():1490035.

PMID: 39845971 PMC: 11752881. DOI: 10.3389/fimmu.2024.1490035.


Alternative splicing of immune-related genes identifies breast cancer subtypes with differential immune cell infiltration.

Zhao Z, Wang Y, Jin Z, Han H, Chen B, Liu M Genes Dis. 2024; 12(2):101349.

PMID: 39649843 PMC: 11625315. DOI: 10.1016/j.gendis.2024.101349.


Alternative 3'UTR expression induced by T cell activation is regulated in a temporal and signal dependent manner.

Blake D, Gazzara M, Breuer I, Ferretti M, Lynch K Sci Rep. 2024; 14(1):10987.

PMID: 38745101 PMC: 11094061. DOI: 10.1038/s41598-024-61951-1.


References
1.
Ly J, Grubb D, Lawen A . The mitochondrial membrane potential (deltapsi(m)) in apoptosis; an update. Apoptosis. 2003; 8(2):115-28. DOI: 10.1023/a:1022945107762. View

2.
Elmore S . Apoptosis: a review of programmed cell death. Toxicol Pathol. 2007; 35(4):495-516. PMC: 2117903. DOI: 10.1080/01926230701320337. View

3.
Su B, Jacinto E, Hibi M, Kallunki T, Karin M, Ben-Neriah Y . JNK is involved in signal integration during costimulation of T lymphocytes. Cell. 1994; 77(5):727-36. DOI: 10.1016/0092-8674(94)90056-6. View

4.
Seol D, Billiar T . A caspase-9 variant missing the catalytic site is an endogenous inhibitor of apoptosis. J Biol Chem. 1999; 274(4):2072-6. DOI: 10.1074/jbc.274.4.2072. View

5.
Butte M, Lee S, Jesneck J, Keir M, Nicholas Haining W, Sharpe A . CD28 costimulation regulates genome-wide effects on alternative splicing. PLoS One. 2012; 7(6):e40032. PMC: 3386953. DOI: 10.1371/journal.pone.0040032. View