6.
Wang J, Zhang J, Xu L, Zheng Y, Ling D, Yang Z
. Expression of HNF4G and its potential functions in lung cancer. Oncotarget. 2018; 9(26):18018-18028.
PMC: 5915054.
DOI: 10.18632/oncotarget.22933.
View
7.
Keenan R
. The biology of urate. Semin Arthritis Rheum. 2020; 50(3S):S2-S10.
DOI: 10.1016/j.semarthrit.2020.04.007.
View
8.
Borrell L, Elhawary J, Fuentes-Afflick E, Witonsky J, Bhakta N, Wu A
. Race and Genetic Ancestry in Medicine - A Time for Reckoning with Racism. N Engl J Med. 2021; 384(5):474-480.
PMC: 8979367.
DOI: 10.1056/NEJMms2029562.
View
9.
Leask M, Dowdle A, Salvesen H, Topless R, Fadason T, Wei W
. Functional Urate-Associated Genetic Variants Influence Expression of lincRNAs and . Front Genet. 2019; 9:733.
PMC: 6348267.
DOI: 10.3389/fgene.2018.00733.
View
10.
Lanaspa M, Tapia E, Soto V, Sautin Y, Sanchez-Lozada L
. Uric acid and fructose: potential biological mechanisms. Semin Nephrol. 2011; 31(5):426-32.
DOI: 10.1016/j.semnephrol.2011.08.006.
View
11.
Tin A, Li Y, Brody J, Nutile T, Chu A, Huffman J
. Large-scale whole-exome sequencing association studies identify rare functional variants influencing serum urate levels. Nat Commun. 2018; 9(1):4228.
PMC: 6185909.
DOI: 10.1038/s41467-018-06620-4.
View
12.
Chen-Xu M, Yokose C, Rai S, Pillinger M, Choi H
. Contemporary Prevalence of Gout and Hyperuricemia in the United States and Decadal Trends: The National Health and Nutrition Examination Survey, 2007-2016. Arthritis Rheumatol. 2019; 71(6):991-999.
PMC: 6536335.
DOI: 10.1002/art.40807.
View
13.
Tin A, Marten J, Kuhns V, Li Y, Wuttke M, Kirsten H
. Target genes, variants, tissues and transcriptional pathways influencing human serum urate levels. Nat Genet. 2019; 51(10):1459-1474.
PMC: 6858555.
DOI: 10.1038/s41588-019-0504-x.
View
14.
Nakatochi M, Kanai M, Nakayama A, Hishida A, Kawamura Y, Ichihara S
. Genome-wide meta-analysis identifies multiple novel loci associated with serum uric acid levels in Japanese individuals. Commun Biol. 2019; 2:115.
PMC: 6453927.
DOI: 10.1038/s42003-019-0339-0.
View
15.
Caliceti C, Calabria D, Roda A, Cicero A
. Fructose Intake, Serum Uric Acid, and Cardiometabolic Disorders: A Critical Review. Nutrients. 2017; 9(4).
PMC: 5409734.
DOI: 10.3390/nu9040395.
View
16.
Capuano V, Marchese F, Capuano R, Torre S, Iannone A, Capuano E
. Hyperuricemia as an independent risk factor for major cardiovascular events: a 10-year cohort study from Southern Italy. J Cardiovasc Med (Hagerstown). 2017; 18(3):159-164.
DOI: 10.2459/JCM.0000000000000347.
View
17.
Sakaue S, Kanai M, Tanigawa Y, Karjalainen J, Kurki M, Koshiba S
. A cross-population atlas of genetic associations for 220 human phenotypes. Nat Genet. 2021; 53(10):1415-1424.
DOI: 10.1038/s41588-021-00931-x.
View
18.
Saroja Voruganti V, Laston S, Haack K, Mehta N, Cole S, Butte N
. Serum uric acid concentrations and SLC2A9 genetic variation in Hispanic children: the Viva La Familia Study. Am J Clin Nutr. 2015; 101(4):725-32.
PMC: 4381775.
DOI: 10.3945/ajcn.114.095364.
View
19.
Stanhope K, Medici V, Bremer A, Lee V, Lam H, Nunez M
. A dose-response study of consuming high-fructose corn syrup-sweetened beverages on lipid/lipoprotein risk factors for cardiovascular disease in young adults. Am J Clin Nutr. 2015; 101(6):1144-54.
PMC: 4441807.
DOI: 10.3945/ajcn.114.100461.
View
20.
Bruun J, Maersk M, Belza A, Astrup A, Richelsen B
. Consumption of sucrose-sweetened soft drinks increases plasma levels of uric acid in overweight and obese subjects: a 6-month randomised controlled trial. Eur J Clin Nutr. 2015; 69(8):949-53.
DOI: 10.1038/ejcn.2015.95.
View