» Articles » PMID: 36234730

Synthesis, Molecular Docking, and Preclinical Evaluation of a New Succinimide Derivative for Cardioprotective, Hepatoprotective and Lipid-Lowering Effects

Overview
Journal Molecules
Publisher MDPI
Specialty Biology
Date 2022 Oct 14
PMID 36234730
Authors
Affiliations
Soon will be listed here.
Abstract

Cardiac and hepatotoxicities are major concerns in the development of new drugs. Better alternatives to other treatments are being sought to protect these vital organs from the toxicities of these pharmaceuticals. In this regard, a preclinical study is designed to investigate the histopathological effects of a new succinimide derivative (Comp-1) on myocardial and liver tissues, and the biochemical effects on selected cardiac biomarkers, hepatic enzymes, and lipid profiles. For this, an initially lethal/toxic dose was determined, followed by a grouping of selected albino rats into five groups (each group had n = 6). The control group received daily oral saline for 8 days. The 5-FU (5-Fluorouracil) group received oral saline daily for 8 days, added with the administration of a single dose of 5-FU (150 mg/kg I.P.) on day 5 of the study. The atenolol group received oral atenolol (20 mg/kg) for 8 days and 5-FU (150 mg/kg I.P.) on day 5 of the protocol. Similarly, two groups of rats treated with test compound (Comp-1) were administered with 5 mg/kg I.P. and 10 mg/kg I.P. for 8 days, followed by 5-FU (150 mg/kg I.P.) on day 5. Toxicity induced by 5-FU was manifested by increases in the serum creatinine kinase myocardial band (CK-MB), troponin I (cTnI) and lactate dehydrogenase (LDH), lipid profile, and selected liver enzymes, including ALP (alkaline phosphatase), ALT (alanine transaminase), AST (aspartate aminotransferase), BT (bilirubin total), and BD (direct bilirubin). These biomarkers were highly significantly decreased after the administration of the mentioned doses of the test compound (5 mg/kg and 10 mg/kg). Similarly, histological examination revealed cardiac and hepatic tissue toxicity by 5-FU. However, those toxic effects were also significantly recovered/improved after the administration of Comp-1 at the said doses. This derivative showed dose-dependent effects and was most effective at a dose of 10 mg/kg body weight. Binding energy data computed via docking simulations revealed that our compound interacts toward the human beta2-adrenergic G protein-coupled receptor (S = -7.89 kcal/mol) with a slight stronger affinity than the calcium channel T-type (S = -7.07 kcal/mol). In conclusion, the histological and biochemical results showed that the test compound (Comp-1) had prominent cardioprotective, hepatoprotective, and lipolytic effects against 5-FU-induced toxicity in the subjected animal model.

Citing Articles

Synthesis and Anti-Inflammatory and Analgesic Potentials of Ethyl 2-(2,5-Dioxo-1-Phenylpyrrolidin-3-yl)-2-Methylpropanoate.

Sadiq A, Khan M, Zafar R, Ullah F, Ahmad S, Ayaz M Pharmaceuticals (Basel). 2024; 17(11).

PMID: 39598432 PMC: 11597207. DOI: 10.3390/ph17111522.


Modification of 4-(4-chlorothiophen-2-yl)thiazol-2-amine derivatives for the treatment of analgesia and inflammation: synthesis and , , and studies.

Mahnashi M, Rashid U, Almasoudi H, Nahari M, Ahmad I, Binshaya A Front Pharmacol. 2024; 15:1366695.

PMID: 38487174 PMC: 10937574. DOI: 10.3389/fphar.2024.1366695.


Exploration of Succinimide Derivative as a Multi-Target, Anti-Diabetic Agent: In Vitro and In Vivo Approaches.

Mahnashi M, Alam W, Huneif M, Abdulwahab A, Alzahrani M, Alshaibari K Molecules. 2023; 28(4).

PMID: 36838577 PMC: 9964140. DOI: 10.3390/molecules28041589.


New Succinimide-Thiazolidinedione Hybrids as Multitarget Antidiabetic Agents: Design, Synthesis, Bioevaluation, and Molecular Modelling Studies.

Huneif M, Mahnashi M, Jan M, Shah M, Almedhesh S, Alqahtani S Molecules. 2023; 28(3).

PMID: 36770873 PMC: 9918900. DOI: 10.3390/molecules28031207.


STS1 and STS2 Phosphatase Inhibitor Baicalein Enhances the Expansion of Hematopoietic and Progenitor Stem Cells and Alleviates 5-Fluorouracil-Induced Myelosuppression.

Li N, Wang Y, Wang A, Zhang J, Jia C, Yu C Int J Mol Sci. 2023; 24(3).

PMID: 36769312 PMC: 9917816. DOI: 10.3390/ijms24032987.

References
1.
Crider A, Kolczynski T, Yates K . Synthesis and anticancer activity of nitrosourea derivatives of phensuximide. J Med Chem. 1980; 23(3):324-6. DOI: 10.1021/jm00177a024. View

2.
Hall I, Wong O, Scovill J . The cytotoxicity of N-Pyridinyl and N-quinolinyl substituted derivatives of phthalimide and succinimide. Biomed Pharmacother. 1995; 49(5):251-8. DOI: 10.1016/0753-3322(96)82631-x. View

3.
Lim S, Vos T, Flaxman A, Danaei G, Shibuya K, Adair-Rohani H . A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012; 380(9859):2224-60. PMC: 4156511. DOI: 10.1016/S0140-6736(12)61766-8. View

4.
An J, Shim J, Kim S, Lee D, Kim K, Lim Y . Prevalence and prediction of coronary artery disease in patients with liver cirrhosis: a registry-based matched case-control study. Circulation. 2014; 130(16):1353-62. DOI: 10.1161/CIRCULATIONAHA.114.009278. View

5.
Poznyak A, Nikiforov N, Markin A, Kashirskikh D, Myasoedova V, Gerasimova E . Overview of OxLDL and Its Impact on Cardiovascular Health: Focus on Atherosclerosis. Front Pharmacol. 2021; 11:613780. PMC: 7836017. DOI: 10.3389/fphar.2020.613780. View