A Bayesian Approach to Model the Underlying Predictors of Early Recurrence and Postoperative Death in Patients with Colorectal Cancer
Overview
Health Services
Affiliations
Objective: This study aimed at utilizing a Bayesian approach semi-competing risks technique to model the underlying predictors of early recurrence and postoperative Death in patients with colorectal cancer (CRC).
Methods: In this prospective cohort study, 284 patients with colorectal cancer, who underwent surgery, referred to Imam Khomeini clinic in Hamadan from 2001 to 2017. The primary outcomes were the probability of recurrence, the probability of Mortality without recurrence, and the probability of Mortality after recurrence. The patients 'recurrence status was determined from patients' records. The Bayesian survival modeling was carried out by semi-competing risks illness-death models, with accelerated failure time (AFT) approach, in R 4.1 software. The best model was chosen according to the lowest deviance information criterion (DIC) and highest logarithm of the pseudo marginal likelihood (LPML).
Results: The log-normal model (DIC = 1633, LPML = -811), was the optimal model. The results showed that gender(Time Ratio = 0.764: 95% Confidence Interval = 0.456-0.855), age at diagnosis (0.764: 0.538-0.935 ), T stage (0601: 0.530-0.713), N stage (0.714: 0.577-0.935 ), tumor size (0.709: 0.610-0.929), grade of differentiation at poor (0.856: 0.733-0.988), and moderate (0.648: 0.503-0.955) levels, and the number of chemotherapies (1.583: 1.367-1.863) were significantly related to recurrence. Also, age at diagnosis (0.396: 0.313-0.532), metastasis to other sites (0.566: 0.490-0.835), T stage (0.363: 0.592 - 0.301), T stage (0.434: 0.347-0.545), grade of differentiation at moderate level (0.527: 0.387-0.674), tumor size (0.595: 0.500-0.679), and the number of chemotherapies (1.541: 1.332-2.243) were the significantly predicted the death. Also, age at diagnosis (0.659: 0.559-0.803), and the number of chemotherapies (2.029: 1.792-2.191) were significantly related to mortality after recurrence.
Conclusion: According to specific results obtained from the optimal Bayesian log-normal model for terminal and non-terminal events, appropriate screening strategies and the earlier detection of CRC leads to substantial improvements in the survival of patients.
Prognostic factors and survival disparities in right-sided versus left-sided colon cancer.
Asghari-Jafarabadi M, Wilkins S, Plazzer J, Yap R, McMurrick P Sci Rep. 2024; 14(1):12306.
PMID: 38811769 PMC: 11136990. DOI: 10.1038/s41598-024-63143-3.
Alinia S, Ahmadi S, Mohammadi Z, Rastkar Shirvandeh F, Asghari-Jafarabadi M, Mahmoudi L Sci Rep. 2024; 14(1):4270.
PMID: 38383712 PMC: 10881505. DOI: 10.1038/s41598-024-54943-8.
Boute T, Swartjes H, Greuter M, Elferink M, van Eekelen R, Vink G Cancer Res Commun. 2024; 4(2):607-616.
PMID: 38363145 PMC: 10903299. DOI: 10.1158/2767-9764.CRC-23-0512.
Alinia S, Asghari-Jafarabadi M, Mahmoudi L, Norouzi S, Safari M, Roshanaei G Sci Rep. 2023; 13(1):15675.
PMID: 37735621 PMC: 10514146. DOI: 10.1038/s41598-023-42926-0.
Zhang X, Zhao L, Hu Y, Deng K, Ren W Int J Colorectal Dis. 2023; 38(1):130.
PMID: 37191907 PMC: 10188377. DOI: 10.1007/s00384-023-04435-4.