» Articles » PMID: 36224207

Persistent Activity in Human Parietal Cortex Mediates Perceptual Choice Repetition Bias

Overview
Journal Nat Commun
Specialty Biology
Date 2022 Oct 12
PMID 36224207
Authors
Affiliations
Soon will be listed here.
Abstract

Humans and other animals tend to repeat or alternate their previous choices, even when judging sensory stimuli presented in a random sequence. It is unclear if and how sensory, associative, and motor cortical circuits produce these idiosyncratic behavioral biases. Here, we combined behavioral modeling of a visual perceptual decision with magnetoencephalographic (MEG) analyses of neural dynamics, across multiple regions of the human cerebral cortex. We identified distinct history-dependent neural signals in motor and posterior parietal cortex. Gamma-band activity in parietal cortex tracked previous choices in a sustained fashion, and biased evidence accumulation toward choice repetition; sustained beta-band activity in motor cortex inversely reflected the previous motor action, and biased the accumulation starting point toward alternation. The parietal, not motor, signal mediated the impact of previous on current choice and reflected individual differences in choice repetition. In sum, parietal cortical signals seem to play a key role in shaping choice sequences.

Citing Articles

Opposing serial effects of stimulus and choice in speech perception scale with context variability.

Ufer C, Blank H iScience. 2024; 27(9):110611.

PMID: 39252961 PMC: 11382034. DOI: 10.1016/j.isci.2024.110611.


A Bayesian Hierarchical Model of Trial-To-Trial Fluctuations in Decision Criterion.

Vloeberghs R, Urai A, Desender K, Linderman S bioRxiv. 2024; .

PMID: 39211219 PMC: 11361103. DOI: 10.1101/2024.07.30.605869.


Confirmation Bias through Selective Use of Evidence in Human Cortex.

Park H, Arazi A, Talluri B, Celotto M, Panzeri S, Stocker A bioRxiv. 2024; .

PMID: 38979146 PMC: 11230165. DOI: 10.1101/2024.06.21.600060.


Multiple and subject-specific roles of uncertainty in reward-guided decision-making.

Paunov A, LHotellier M, Guo D, He Z, Yu A, Meyniel F bioRxiv. 2024; .

PMID: 38585958 PMC: 10996615. DOI: 10.1101/2024.03.27.587016.


Proactive response preparation contributes to contingency learning: novel evidence from force-sensitive keyboards.

Weissman D, Schmidt J Psychol Res. 2024; 88(4):1182-1202.

PMID: 38483575 DOI: 10.1007/s00426-024-01940-1.


References
1.
Akaishi R, Umeda K, Nagase A, Sakai K . Autonomous mechanism of internal choice estimate underlies decision inertia. Neuron. 2013; 81(1):195-206. DOI: 10.1016/j.neuron.2013.10.018. View

2.
Bogacz R, Brown E, Moehlis J, Holmes P, Cohen J . The physics of optimal decision making: a formal analysis of models of performance in two-alternative forced-choice tasks. Psychol Rev. 2006; 113(4):700-65. DOI: 10.1037/0033-295X.113.4.700. View

3.
Lak A, Hueske E, Hirokawa J, Masset P, Ott T, Urai A . Reinforcement biases subsequent perceptual decisions when confidence is low, a widespread behavioral phenomenon. Elife. 2020; 9. PMC: 7213979. DOI: 10.7554/eLife.49834. View

4.
Desender K, Boldt A, Verguts T, Donner T . Confidence predicts speed-accuracy tradeoff for subsequent decisions. Elife. 2019; 8. PMC: 6711665. DOI: 10.7554/eLife.43499. View

5.
St John-Saaltink E, Kok P, Lau H, de Lange F . Serial Dependence in Perceptual Decisions Is Reflected in Activity Patterns in Primary Visual Cortex. J Neurosci. 2016; 36(23):6186-92. PMC: 6604889. DOI: 10.1523/JNEUROSCI.4390-15.2016. View