Mono- and Bimetallic Nanoparticles for Catalytic Degradation of Hazardous Organic Dyes and Antibacterial Applications
Overview
Authors
Affiliations
In the present work, gold (Au), silver (Ag), and copper (Cu) based mono- and bimetallic NPs are prepared using a cost-effective facile wet chemical route. The pH for the synthesis is optimized in accordance with the optical spectra and supported by the finite difference time domain simulation studies. FESEM and TEM micrographs are used to analyze the morphology of the prepared nanoparticles. TEM images of bimetallic nanoparticles (BMPs) verified their bimetallic nature. XRD studies confirmed the formation of fcc-structured mono- and bimetallic NPs. Photoluminescence studies of the as-synthesized NPs are in good agreement with the previous publications. These synthesized NPs showed enhanced catalytic activity for the reduction/degradation of 4-nitrophenol, rhodamine B, and indigo carmine dyes in the presence of sodium borohydride (NaBH) compared to NaBH alone. For the reduction of 4-nitrophenol, Au, Cu, and CuAg nanoparticles exhibited good catalytic efficiency compared to others, whereas for the degradation of rhodamine B and indigo carmine dyes the catalytic efficiency is comparatively high for CuAg BMPs. Furthermore, the antibacterial assay is carried out, and Ag NPs display effective antibacterial activity against , ser. Typhimurium, , , and .
Polyol-Assisted Synthesis of Ni/Cu/Ag Trimetallic Nanoparticles for Nonlinear Optical Applications.
Molakkalu Padre S, Shetty S, Bhat S, Rebello D, Surabhi S, Rao S ACS Omega. 2024; 9(47):46773-46783.
PMID: 39619508 PMC: 11603202. DOI: 10.1021/acsomega.4c03143.
Sahu M, Ganguly M, Sharma P Nanoscale Adv. 2024; .
PMID: 39148500 PMC: 11322903. DOI: 10.1039/d4na00427b.
Biosynthesis of JC-LaCoO magnetic nanoparticles explored in catalytic and SMMs properties.
Satpute N, Ghosh M, Kesharwani A, Ghorai T Sci Rep. 2023; 13(1):22122.
PMID: 38092788 PMC: 10719267. DOI: 10.1038/s41598-023-47852-9.
Liu H, Huang Z, Chen H, Zhang Y, Yu P, Hu P J Nanobiotechnology. 2023; 21(1):409.
PMID: 37932843 PMC: 10626710. DOI: 10.1186/s12951-023-02149-x.
Shafiq A, Deshmukh A, AbouAitah K, Kim B J Funct Biomater. 2023; 14(6).
PMID: 37367289 PMC: 10299563. DOI: 10.3390/jfb14060325.