Orzan F, Iancu S, Diosan L, Balint Z
Front Neurosci. 2025; 18:1457420.
PMID: 39906910
PMC: 11790655.
DOI: 10.3389/fnins.2024.1457420.
Doo F, Naranjo W, Kapouranis T, Thor M, Chao M, Yang X
Clin Oncol (R Coll Radiol). 2025; 39:103758.
PMID: 39874747
PMC: 11850178.
DOI: 10.1016/j.clon.2025.103758.
Mastrodicasa D, van Assen M, Huisman M, Leiner T, Williamson E, Nicol E
Radiology. 2025; 314(1):e240516.
PMID: 39873607
PMC: 11783164.
DOI: 10.1148/radiol.240516.
Jung H, Kim K, Park J, Kim N
Korean J Radiol. 2024; 25(11):959-981.
PMID: 39473088
PMC: 11524689.
DOI: 10.3348/kjr.2024.0392.
Sourlos N, Vliegenthart R, Santinha J, Klontzas M, Cuocolo R, Huisman M
Insights Imaging. 2024; 15(1):248.
PMID: 39400639
PMC: 11473745.
DOI: 10.1186/s13244-024-01833-2.
Development of a deep learning model for the automated detection of green pixels indicative of gout on dual energy CT scan.
Faghani S, Nicholas R, Patel S, Baffour F, Moassefi M, Rouzrokh P
Res Diagn Interv Imaging. 2024; 9:100044.
PMID: 39076582
PMC: 11265492.
DOI: 10.1016/j.redii.2024.100044.
Clinical, Cultural, Computational, and Regulatory Considerations to Deploy AI in Radiology: Perspectives of RSNA and MICCAI Experts.
Linguraru M, Bakas S, Aboian M, Chang P, Flanders A, Kalpathy-Cramer J
Radiol Artif Intell. 2024; 6(4):e240225.
PMID: 38984986
PMC: 11294958.
DOI: 10.1148/ryai.240225.
Whole-body low-dose computed tomography in patients with newly diagnosed multiple myeloma predicts cytogenetic risk: a deep learning radiogenomics study.
Faghani S, Moassefi M, Yadav U, Buadi F, Kumar S, Erickson B
Skeletal Radiol. 2024; 54(2):267-273.
PMID: 38937291
PMC: 11652250.
DOI: 10.1007/s00256-024-04733-0.
When AUC-ROC and accuracy are not accurate: what everyone needs to know about evaluating artificial intelligence in radiology.
Huisman M
Eur Radiol. 2024; 34(12):7892-7894.
PMID: 38913248
DOI: 10.1007/s00330-024-10859-5.
Time-Dependent Deep Learning Prediction of Multiple Sclerosis Disability.
Mayfield J, Murtagh R, Ciotti J, Robertson D, El Naqa I
J Imaging Inform Med. 2024; 37(6):3231-3249.
PMID: 38871944
PMC: 11612123.
DOI: 10.1007/s10278-024-01031-y.
Feasibility of ultrasound radiomics based models for classification of liver fibrosis due to Schistosoma japonicum infection.
Guo Z, Zhao M, Liu Z, Zheng J, Gong Y, Huang L
PLoS Negl Trop Dis. 2024; 18(6):e0012235.
PMID: 38870200
PMC: 11207143.
DOI: 10.1371/journal.pntd.0012235.
Bone Age Prediction under Stress.
Faghani S, Erickson B
Radiol Artif Intell. 2024; 6(3):e240137.
PMID: 38629960
PMC: 11140503.
DOI: 10.1148/ryai.240137.
MIDRC-MetricTree: a decision tree-based tool for recommending performance metrics in artificial intelligence-assisted medical image analysis.
Drukker K, Sahiner B, Hu T, Kim G, Whitney H, Baughan N
J Med Imaging (Bellingham). 2024; 11(2):024504.
PMID: 38576536
PMC: 10990563.
DOI: 10.1117/1.JMI.11.2.024504.
Uncover This Tech Term: Uncertainty Quantification for Deep Learning.
Faghani S, Gamble C, Erickson B
Korean J Radiol. 2024; 25(4):395-398.
PMID: 38528697
PMC: 10973738.
DOI: 10.3348/kjr.2024.0108.
Identifying Patients with CSF-Venous Fistula Using Brain MRI: A Deep Learning Approach.
Faghani S, Moassefi M, Madhavan A, Mark I, Verdoorn J, Erickson B
AJNR Am J Neuroradiol. 2024; 45(4):439-443.
PMID: 38423747
PMC: 11288568.
DOI: 10.3174/ajnr.A8173.
Assessing radiologists' and radiographers' perceptions on artificial intelligence integration: opportunities and challenges.
Al Mohammad B, Aldaradkeh A, Gharaibeh M, Reed W
Br J Radiol. 2024; 97(1156):763-769.
PMID: 38273675
PMC: 11027289.
DOI: 10.1093/bjr/tqae022.
AI pitfalls and what not to do: mitigating bias in AI.
Wawira Gichoya J, Thomas K, Celi L, Safdar N, Banerjee I, Banja J
Br J Radiol. 2023; 96(1150):20230023.
PMID: 37698583
PMC: 10546443.
DOI: 10.1259/bjr.20230023.
Educational Overview of the Concept and Application of Computer Vision in Arthroplasty.
Vera-Garcia D, Nugen F, Padash S, Khosravi B, Mickley J, Erickson B
J Arthroplasty. 2023; 38(10):1954-1958.
PMID: 37633507
PMC: 10616773.
DOI: 10.1016/j.arth.2023.08.046.
Longitudinal assessment of demographic representativeness in the Medical Imaging and Data Resource Center open data commons.
Whitney H, Baughan N, Myers K, Drukker K, Gichoya J, Bower B
J Med Imaging (Bellingham). 2023; 10(6):61105.
PMID: 37469387
PMC: 10353566.
DOI: 10.1117/1.JMI.10.6.061105.
On the Analyses of Medical Images Using Traditional Machine Learning Techniques and Convolutional Neural Networks.
Iqbal S, Qureshi A, Li J, Mahmood T
Arch Comput Methods Eng. 2023; 30(5):3173-3233.
PMID: 37260910
PMC: 10071480.
DOI: 10.1007/s11831-023-09899-9.