» Articles » PMID: 36204539

Mitigating Bias in Radiology Machine Learning: 3. Performance Metrics

Abstract

The increasing use of machine learning (ML) algorithms in clinical settings raises concerns about bias in ML models. Bias can arise at any step of ML creation, including data handling, model development, and performance evaluation. Potential biases in the ML model can be minimized by implementing these steps correctly. This report focuses on performance evaluation and discusses model fitness, as well as a set of performance evaluation toolboxes: namely, performance metrics, performance interpretation maps, and uncertainty quantification. By discussing the strengths and limitations of each toolbox, our report highlights strategies and considerations to mitigate and detect biases during performance evaluations of radiology artificial intelligence models. Segmentation, Diagnosis, Convolutional Neural Network (CNN) © RSNA, 2022.

Citing Articles

Textural analysis and artificial intelligence as decision support tools in the diagnosis of multiple sclerosis - a systematic review.

Orzan F, Iancu S, Diosan L, Balint Z Front Neurosci. 2025; 18:1457420.

PMID: 39906910 PMC: 11790655. DOI: 10.3389/fnins.2024.1457420.


Sex-Based Bias in Artificial Intelligence-Based Segmentation Models in Clinical Oncology.

Doo F, Naranjo W, Kapouranis T, Thor M, Chao M, Yang X Clin Oncol (R Coll Radiol). 2025; 39:103758.

PMID: 39874747 PMC: 11850178. DOI: 10.1016/j.clon.2025.103758.


Use of AI in Cardiac CT and MRI: A Scientific Statement from the ESCR, EuSoMII, NASCI, SCCT, SCMR, SIIM, and RSNA.

Mastrodicasa D, van Assen M, Huisman M, Leiner T, Williamson E, Nicol E Radiology. 2025; 314(1):e240516.

PMID: 39873607 PMC: 11783164. DOI: 10.1148/radiol.240516.


Image-Based Generative Artificial Intelligence in Radiology: Comprehensive Updates.

Jung H, Kim K, Park J, Kim N Korean J Radiol. 2024; 25(11):959-981.

PMID: 39473088 PMC: 11524689. DOI: 10.3348/kjr.2024.0392.


Recommendations for the creation of benchmark datasets for reproducible artificial intelligence in radiology.

Sourlos N, Vliegenthart R, Santinha J, Klontzas M, Cuocolo R, Huisman M Insights Imaging. 2024; 15(1):248.

PMID: 39400639 PMC: 11473745. DOI: 10.1186/s13244-024-01833-2.


References
1.
Zhang K, Khosravi B, Vahdati S, Faghani S, Nugen F, Rassoulinejad-Mousavi S . Mitigating Bias in Radiology Machine Learning: 2. Model Development. Radiol Artif Intell. 2022; 4(5):e220010. PMC: 9530765. DOI: 10.1148/ryai.220010. View

2.
Rudin C . Stop Explaining Black Box Machine Learning Models for High Stakes Decisions and Use Interpretable Models Instead. Nat Mach Intell. 2022; 1(5):206-215. PMC: 9122117. DOI: 10.1038/s42256-019-0048-x. View

3.
Arun N, Gaw N, Singh P, Chang K, Aggarwal M, Chen B . Assessing the Trustworthiness of Saliency Maps for Localizing Abnormalities in Medical Imaging. Radiol Artif Intell. 2021; 3(6):e200267. PMC: 8637231. DOI: 10.1148/ryai.2021200267. View

4.
Juravle G, Boudouraki A, Terziyska M, Rezlescu C . Trust in artificial intelligence for medical diagnoses. Prog Brain Res. 2020; 253:263-282. DOI: 10.1016/bs.pbr.2020.06.006. View

5.
Eche T, Schwartz L, Mokrane F, Dercle L . Toward Generalizability in the Deployment of Artificial Intelligence in Radiology: Role of Computation Stress Testing to Overcome Underspecification. Radiol Artif Intell. 2021; 3(6):e210097. PMC: 8637230. DOI: 10.1148/ryai.2021210097. View