» Articles » PMID: 36203940

Non-coding RNAs As Potential Biomarkers and Therapeutic Targets in Polycystic Kidney Disease

Overview
Journal Front Physiol
Date 2022 Oct 7
PMID 36203940
Authors
Affiliations
Soon will be listed here.
Abstract

Polycystic kidney disease (PKD) is a significant cause of end-stage kidney failure and there are few effective drugs for treating this inherited condition. Numerous aberrantly expressed non-coding RNAs (ncRNAs), particularly microRNAs (miRNAs), may contribute to PKD pathogenesis by participating in multiple intracellular and intercellular functions through post-transcriptional regulation of protein-encoding genes. Insights into the mechanisms of miRNAs and other ncRNAs in the development of PKD may provide novel therapeutic strategies. In this review, we discuss the current knowledge about the roles of dysregulated miRNAs and other ncRNAs in PKD. These roles involve multiple aspects of cellular function including mitochondrial metabolism, proliferation, cell death, fibrosis and cell-to-cell communication. We also summarize the potential application of miRNAs as biomarkers or therapeutic targets in PKD, and briefly describe strategies to overcome the challenges of delivering RNA to the kidney, providing a better understanding of the fundamental advances in utilizing miRNAs and other non-coding RNAs to treat PKD.

Citing Articles

Gene therapy in polycystic kidney disease: A promising future.

Xue C, Lv J, Yang B, Mei S, Xu J, Li X J Transl Int Med. 2025; 12(6):543-552.

PMID: 39802450 PMC: 11720931. DOI: 10.1515/jtim-2024-0021.


Exploring the Therapeutic Significance of microRNAs and lncRNAs in Kidney Diseases.

Bravo-Vazquez L, Paul S, Colin-Jurado M, Marquez-Gallardo L, Castanon-Cortes L, Banerjee A Genes (Basel). 2024; 15(1).

PMID: 38275604 PMC: 10815231. DOI: 10.3390/genes15010123.


Novel α-1,3-Glucosyltransferase Variants and Their Broad Clinical Polycystic Liver Disease Spectrum.

Boerrigter M, Te Morsche R, Venselaar H, Pastoors N, Geerts A, Hoorens A Genes (Basel). 2023; 14(8).

PMID: 37628703 PMC: 10454741. DOI: 10.3390/genes14081652.


Urinary Biomarkers in Monitoring the Progression and Treatment of Autosomal Dominant Polycystic Kidney Disease-The Promised Land?.

Pana C, Stanigut A, Cimpineanu B, Alexandru A, Salim C, Nicoara A Medicina (Kaunas). 2023; 59(5).

PMID: 37241147 PMC: 10224545. DOI: 10.3390/medicina59050915.

References
1.
GARDNER Jr K, Burnside J, Elzinga L, Locksley R . Cytokines in fluids from polycystic kidneys. Kidney Int. 1991; 39(4):718-24. DOI: 10.1038/ki.1991.87. View

2.
Patel V, Williams D, Hajarnis S, Hunter R, Pontoglio M, Somlo S . miR-17~92 miRNA cluster promotes kidney cyst growth in polycystic kidney disease. Proc Natl Acad Sci U S A. 2013; 110(26):10765-70. PMC: 3696812. DOI: 10.1073/pnas.1301693110. View

3.
Dweep H, Sticht C, Kharkar A, Pandey P, Gretz N . Parallel analysis of mRNA and microRNA microarray profiles to explore functional regulatory patterns in polycystic kidney disease: using PKD/Mhm rat model. PLoS One. 2013; 8(1):e53780. PMC: 3542345. DOI: 10.1371/journal.pone.0053780. View

4.
Hirotsune S, Yoshida N, Chen A, Garrett L, Sugiyama F, Takahashi S . An expressed pseudogene regulates the messenger-RNA stability of its homologous coding gene. Nature. 2003; 423(6935):91-6. DOI: 10.1038/nature01535. View

5.
Liu G, Kang X, Guo P, Shang Y, Du R, Wang X . miR-25-3p promotes proliferation and inhibits autophagy of renal cells in polycystic kidney mice by regulating ATG14-Beclin 1. Ren Fail. 2020; 42(1):333-342. PMC: 7241494. DOI: 10.1080/0886022X.2020.1745236. View