» Articles » PMID: 36184671

Ancient Marine Sediment DNA Reveals Diatom Transition in Antarctica

Abstract

Antarctica is one of the most vulnerable regions to climate change on Earth and studying the past and present responses of this polar marine ecosystem to environmental change is a matter of urgency. Sedimentary ancient DNA (sedaDNA) analysis can provide such insights into past ecosystem-wide changes. Here we present authenticated (through extensive contamination control and sedaDNA damage analysis) metagenomic marine eukaryote sedaDNA from the Scotia Sea region acquired during IODP Expedition 382. We also provide a marine eukaryote sedaDNA record of ~1 Mio. years and diatom and chlorophyte sedaDNA dating back to ~540 ka (using taxonomic marker genes SSU, LSU, psbO). We find evidence of warm phases being associated with high relative diatom abundance, and a marked transition from diatoms comprising <10% of all eukaryotes prior to ~14.5 ka, to ~50% after this time, i.e., following Meltwater Pulse 1A, alongside a composition change from sea-ice to open-ocean species. Our study demonstrates that sedaDNA tools can be expanded to hundreds of thousands of years, opening the pathway to the study of ecosystem-wide marine shifts and paleo-productivity phases throughout multiple glacial-interglacial cycles.

Citing Articles

Sedimentary DNA insights into Holocene Adélie penguin (Pygoscelis adeliae) populations and ecology in the Ross Sea, Antarctica.

Wood J, Zhou C, Cole T, Coleman M, Anderson D, Lyver P Nat Commun. 2025; 16(1):1798.

PMID: 40044673 PMC: 11883008. DOI: 10.1038/s41467-025-56925-4.


The Micropaleoecology Framework: Evaluating Biotic Responses to Global Change Through Paleoproxy, Microfossil, and Ecological Data Integration.

Woodhouse A, Swain A, Smith J, Sibert E, Lam A, Dunne J Ecol Evol. 2024; 14(11):e70470.

PMID: 39493613 PMC: 11525056. DOI: 10.1002/ece3.70470.


Archaeology meets environmental genomics: implementing sedaDNA in the study of the human past.

Ozdogan K, Gelabert P, Hammers N, Altinisik N, de Groot A, Plets G Archaeol Anthropol Sci. 2024; 16(7):108.

PMID: 38948161 PMC: 11213777. DOI: 10.1007/s12520-024-01999-2.


Exploring the prokaryote-eukaryote interplay in microbial mats from an Andean athalassohaline wetland.

Cubillos C, Aguilar P, Moreira D, Bertolino P, Iniesto M, Dorador C Microbiol Spectr. 2024; 12(4):e0007224.

PMID: 38456669 PMC: 10986560. DOI: 10.1128/spectrum.00072-24.


Plankton community changes during the last 124 000 years in the subarctic Bering Sea derived from sedimentary ancient DNA.

Buchwald S, Herzschuh U, Nurnberg D, Harms L, Stoof-Leichsenring K ISME J. 2024; 18(1).

PMID: 38365253 PMC: 10811732. DOI: 10.1093/ismejo/wrad006.


References
1.
Clarke E, Taylor L, Zhao C, Connell A, Lee J, Fett B . Sunbeam: an extensible pipeline for analyzing metagenomic sequencing experiments. Microbiome. 2019; 7(1):46. PMC: 6429786. DOI: 10.1186/s40168-019-0658-x. View

2.
Liu C, Huang X, Xie T, Duan N, Xue Y, Zhao T . Exploration of cultivable fungal communities in deep coal-bearing sediments from ∼1.3 to 2.5 km below the ocean floor. Environ Microbiol. 2016; 19(2):803-818. DOI: 10.1111/1462-2920.13653. View

3.
Weber M, Clark P, Kuhn G, Timmermann A, Sprenk D, Gladstone R . Millennial-scale variability in Antarctic ice-sheet discharge during the last deglaciation. Nature. 2014; 510(7503):134-8. DOI: 10.1038/nature13397. View

4.
Huson D, Beier S, Flade I, Gorska A, El-Hadidi M, Mitra S . MEGAN Community Edition - Interactive Exploration and Analysis of Large-Scale Microbiome Sequencing Data. PLoS Comput Biol. 2016; 12(6):e1004957. PMC: 4915700. DOI: 10.1371/journal.pcbi.1004957. View

5.
De Schepper S, Ray J, Skaar K, Sadatzki H, Ijaz U, Stein R . The potential of sedimentary ancient DNA for reconstructing past sea ice evolution. ISME J. 2019; 13(10):2566-2577. PMC: 6776040. DOI: 10.1038/s41396-019-0457-1. View