» Articles » PMID: 36179020

Orientation Pinwheels in Primary Visual Cortex of a Highly Visual Marsupial

Overview
Journal Sci Adv
Specialties Biology
Science
Date 2022 Sep 30
PMID 36179020
Authors
Affiliations
Soon will be listed here.
Abstract

Primary visual cortices in many mammalian species exhibit modular and periodic orientation preference maps arranged in pinwheel-like layouts. The role of inherited traits as opposed to environmental influences in determining this organization remains unclear. Here, we characterize the cortical organization of an Australian marsupial, revealing pinwheel organization resembling that of eutherian carnivores and primates but distinctly different from the simpler salt-and-pepper arrangement of eutherian rodents and rabbits. The divergence of marsupials from eutherians 160 million years ago and the later emergence of rodents and rabbits suggest that the salt-and-pepper structure is not the primitive ancestral form. Rather, the genetic code that enables complex pinwheel formation is likely widespread, perhaps extending back to the common therian ancestors of modern mammals.

Citing Articles

Orientation selectivity properties for the affine Gaussian derivative and the affine Gabor models for visual receptive fields.

Lindeberg T J Comput Neurosci. 2025; 53(1):61-98.

PMID: 39878929 PMC: 11868404. DOI: 10.1007/s10827-024-00888-w.


Feature selectivity and invariance in marsupial primary visual cortex.

Jung Y, Almasi A, Sun S, Yunzab M, Baquier S, Renfree M J Physiol. 2024; 603(2):423-445.

PMID: 39625561 PMC: 11737535. DOI: 10.1113/JP285757.


Mesoscopic calcium imaging in a head-unrestrained male non-human primate using a lensless microscope.

Wu J, Chen Y, Veeraraghavan A, Seidemann E, Robinson J Nat Commun. 2024; 15(1):1271.

PMID: 38341403 PMC: 10858944. DOI: 10.1038/s41467-024-45417-6.


Characterization of extracellular spike waveforms recorded in wallaby primary visual cortex.

Jung Y, Sun S, Almasi A, Yunzab M, Meffin H, Ibbotson M Front Neurosci. 2023; 17:1244952.

PMID: 37746137 PMC: 10517629. DOI: 10.3389/fnins.2023.1244952.

References
1.
Shinozaki A, Hosaka Y, Imagawa T, Uehara M . Topography of ganglion cells and photoreceptors in the sheep retina. J Comp Neurol. 2010; 518(12):2305-15. DOI: 10.1002/cne.22333. View

2.
Clarke P, Donaldson I, WHITTERIDGE D . Binocular visual mechanisms in cortical areas I and II of the sheep. J Physiol. 1976; 256(3):509-26. PMC: 1309322. DOI: 10.1113/jphysiol.1976.sp011336. View

3.
Cang J, Renteria R, Kaneko M, Liu X, Copenhagen D, Stryker M . Development of precise maps in visual cortex requires patterned spontaneous activity in the retina. Neuron. 2005; 48(5):797-809. PMC: 2562716. DOI: 10.1016/j.neuron.2005.09.015. View

4.
Hubel D, Wiesel T . Receptive fields and functional architecture of monkey striate cortex. J Physiol. 1968; 195(1):215-43. PMC: 1557912. DOI: 10.1113/jphysiol.1968.sp008455. View

5.
Van Hooser S . Similarity and diversity in visual cortex: is there a unifying theory of cortical computation?. Neuroscientist. 2007; 13(6):639-56. DOI: 10.1177/1073858407306597. View