» Articles » PMID: 36175664

The Role of Mitochondria in Rheumatic Diseases

Overview
Specialty Rheumatology
Date 2022 Sep 29
PMID 36175664
Authors
Affiliations
Soon will be listed here.
Abstract

The mitochondrion is an intracellular organelle thought to originate from endosymbiosis between an ancestral eukaryotic cell and an α-proteobacterium. Mitochondria are the powerhouses of the cell, and can control several important processes within the cell, such as cell death. Conversely, dysregulation of mitochondria possibly contributes to the pathophysiology of several autoimmune diseases. Defects in mitochondria can be caused by mutations in the mitochondrial genome or by chronic exposure to pro-inflammatory cytokines, including type I interferons. Following the release of intact mitochondria or mitochondrial components into the cytosol or the extracellular space, the bacteria-like molecular motifs of mitochondria can elicit pro-inflammatory responses by the innate immune system. Moreover, antibodies can target mitochondria in autoimmune diseases, suggesting an interplay between the adaptive immune system and mitochondria. In this Review, we discuss the roles of mitochondria in rheumatic diseases such as systemic lupus erythematosus, antiphospholipid syndrome and rheumatoid arthritis. An understanding of the different contributions of mitochondria to distinct rheumatic diseases or manifestations could permit the development of novel therapeutic strategies and the use of mitochondria-derived biomarkers to inform pathogenesis.

Citing Articles

Mitochondrial-Mediated Platelet Activation in Polymyalgia Rheumatica.

Michailidou D, Johansson L, Chapa J, Wang T, Chen J, Lopez J ACR Open Rheumatol. 2025; 7(3):e70021.

PMID: 40071558 PMC: 11897803. DOI: 10.1002/acr2.70021.


Mitochondrial antigens: their presentation and related diseases.

Zhang S, Su S Sci China Life Sci. 2025; .

PMID: 39971878 DOI: 10.1007/s11427-024-2781-x.


The role of mitochondrial DNA copy number in autoimmune disease: a bidirectional two sample mendelian randomization study.

Liu Z, Fu Q, Shao Y, Duan X Front Immunol. 2024; 15:1409969.

PMID: 39464879 PMC: 11502960. DOI: 10.3389/fimmu.2024.1409969.


Mechanisms underlying sex differences in autoimmunity.

Fairweather D, Beetler D, McCabe E, Lieberman S J Clin Invest. 2024; 134(18).

PMID: 39286970 PMC: 11405048. DOI: 10.1172/JCI180076.


Abscopal effect: from a rare phenomenon to a new frontier in cancer therapy.

Wang X, Zhang H, XinZhang , Liu Y Biomark Res. 2024; 12(1):98.

PMID: 39228005 PMC: 11373306. DOI: 10.1186/s40364-024-00628-3.


References
1.
Wincup C, Radziszewska A . Abnormal Mitochondrial Physiology in the Pathogenesis of Systemic Lupus Erythematosus. Rheum Dis Clin North Am. 2021; 47(3):427-439. DOI: 10.1016/j.rdc.2021.05.001. View

2.
Colonna L, Lood C, Elkon K . Beyond apoptosis in lupus. Curr Opin Rheumatol. 2014; 26(5):459-66. PMC: 4272326. DOI: 10.1097/BOR.0000000000000083. View

3.
Miller W . Role of mitochondria in steroidogenesis. Endocr Dev. 2010; 20:1-19. DOI: 10.1159/000321204. View

4.
Miller W, Portale A . Genetics of vitamin D biosynthesis and its disorders. Best Pract Res Clin Endocrinol Metab. 2001; 15(1):95-109. DOI: 10.1053/beem.2001.0122. View

5.
Piel 3rd R, Dailey Jr H, Medlock A . The mitochondrial heme metabolon: Insights into the complex(ity) of heme synthesis and distribution. Mol Genet Metab. 2019; 128(3):198-203. PMC: 6640082. DOI: 10.1016/j.ymgme.2019.01.006. View