» Articles » PMID: 36171466

Blind-noise Image Denoising with Block-matching Domain Transformation Filtering and Improved Guided Filtering

Overview
Journal Sci Rep
Specialty Science
Date 2022 Sep 28
PMID 36171466
Authors
Affiliations
Soon will be listed here.
Abstract

The adaptive block size processing method in different image areas makes block-matching and 3D-filtering (BM3D) have a very good image denoising effect. Based on these observation, in this paper, we improve BM3D in three aspects: adaptive noise variance estimation, domain transformation filtering and nonlinear filtering. First, we improve the noise-variance estimation method of principle component analysis using multilayer wavelet decomposition. Second, we propose compressive sensing based Gaussian sequence Hartley domain transform filtering to reduce noise. Finally, we perform edge-preserving smoothing on the preprocessed image using the guided filtering based on total variation. Experimental results show that the proposed denoising method can be competitive with many representative denoising methods on the evaluation criteria of PSNR. However, it is worth further research on the visual quality of denoised images.

Citing Articles

Deep Learning-Based Super-Resolution Reconstruction on Undersampled Brain Diffusion-Weighted MRI for Infarction Stroke: A Comparison to Conventional Iterative Reconstruction.

Zhang S, Zhong M, Shenliu H, Wang N, Hu S, Lu X AJNR Am J Neuroradiol. 2025; 46(1):41-48.

PMID: 39779291 PMC: 11735436. DOI: 10.3174/ajnr.A8482.


Noise & mottle suppression methods for cumulative Cherenkov images of radiation therapy delivery.

Hallett J, Bruza P, Jermyn M, Li K, Pogue B Phys Med Biol. 2024; 69(22).

PMID: 39474803 PMC: 11639195. DOI: 10.1088/1361-6560/ad8c93.


Exploring fetal brain tumor glioblastoma symptom verification with self organizing maps and vulnerability data analysis.

Natarajan S, S J, Mathivanan S, Rajadurai H, M B B, Shah M Sci Rep. 2024; 14(1):8738.

PMID: 38627421 PMC: 11522281. DOI: 10.1038/s41598-024-59111-6.


A Robust Noise Estimation Algorithm Based on Redundant Prediction and Local Statistics.

Xie H, Yi S, Yang Z Sensors (Basel). 2024; 24(1).

PMID: 38203031 PMC: 10781349. DOI: 10.3390/s24010168.


On the reduction of mixed Gaussian and impulsive noise in heavily corrupted color images.

Smolka B, Kusnik D, Radlak K Sci Rep. 2023; 13(1):21035.

PMID: 38030658 PMC: 10687184. DOI: 10.1038/s41598-023-48036-1.


References
1.
Zhao W, Liu Q, Lv Y, Qin B . Texture Variation Adaptive Image Denoising With Nonlocal PCA. IEEE Trans Image Process. 2019; 28(11):5537-5551. DOI: 10.1109/TIP.2019.2916976. View

2.
Pyatykh S, Hesser J, Zheng L . Image noise level estimation by principal component analysis. IEEE Trans Image Process. 2012; 22(2):687-99. DOI: 10.1109/TIP.2012.2221728. View

3.
Dabov K, Foi A, Katkovnik V, Egiazarian K . Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans Image Process. 2007; 16(8):2080-95. DOI: 10.1109/tip.2007.901238. View

4.
Dong W, Zhang L, Shi G, Li X . Nonlocally centralized sparse representation for image restoration. IEEE Trans Image Process. 2012; 22(4):1620-30. DOI: 10.1109/TIP.2012.2235847. View

5.
Dey N, Blanc-Feraud L, Zimmer C, Roux P, Kam Z, Olivo-Marin J . Richardson-Lucy algorithm with total variation regularization for 3D confocal microscope deconvolution. Microsc Res Tech. 2006; 69(4):260-6. DOI: 10.1002/jemt.20294. View