» Articles » PMID: 36171415

Options for the Generation of Seedless Cherry, the Ultimate Snacking Product

Overview
Journal Planta
Specialty Biology
Date 2022 Sep 28
PMID 36171415
Authors
Affiliations
Soon will be listed here.
Abstract

This manuscript identifies cherry orthologues of genes implicated in the development of pericarpic fruit and pinpoints potential options and restrictions in the use of these targets for commercial exploitation of parthenocarpic cherry fruit. Cherry fruit contain a large stone and seed, making processing of the fruit laborious and consumption by the consumer challenging, inconvenient to eat 'on the move' and potentially dangerous for children. Availability of fruit lacking the stone and seed would be potentially transformative for the cherry industry, since such fruit would be easier to process and would increase consumer demand because of the potential reduction in costs. This review will explore the background of seedless fruit, in the context of the ambition to produce the first seedless cherry, carry out an in-depth analysis of the current literature around parthenocarpy in fruit, and discuss the available technology and potential for producing seedless cherry fruit as an 'ultimate snacking product' for the twenty-first century.

Citing Articles

Comparative gametogenesis and genomic signatures associated with pollen sterility in the seedless mutant of grapevine.

Chavan S, Phalake S, Tetali S, Barvkar V, Patil R BMC Plant Biol. 2025; 25(1):138.

PMID: 39894805 PMC: 11789394. DOI: 10.1186/s12870-025-06075-y.


Morphological Changes to Fruit Development Induced by GA Application in Sweet Cherry ( L.).

Vignati E, Caccamo M, Dunwell J, Simkin A Plants (Basel). 2024; 13(15).

PMID: 39124170 PMC: 11314404. DOI: 10.3390/plants13152052.


Optimization of In Vitro Embryo Rescue and Development of a Kompetitive Allele-Specific PCR (KASP) Marker Related to Stenospermocarpic Seedlessness in Grape ( L.).

Xi X, Gutierrez B, Zha Q, Yin X, Sun P, Jiang A Int J Mol Sci. 2023; 24(24).

PMID: 38139179 PMC: 10744101. DOI: 10.3390/ijms242417350.


Feeding the world: impacts of elevated [CO] on nutrient content of greenhouse grown fruit crops and options for future yield gains.

Doddrell N, Lawson T, Raines C, Wagstaff C, Simkin A Hortic Res. 2023; 10(4):uhad026.

PMID: 37090096 PMC: 10116952. DOI: 10.1093/hr/uhad026.


Seedlessness Trait and Genome Editing-A Review.

Moniruzzaman M, Darwish A, Ismail A, El-Kereamy A, Tsolova V, El-Sharkawy I Int J Mol Sci. 2023; 24(6).

PMID: 36982733 PMC: 10057249. DOI: 10.3390/ijms24065660.

References
1.
Jack T, Brockman L, Meyerowitz E . The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS box and is expressed in petals and stamens. Cell. 1992; 68(4):683-97. DOI: 10.1016/0092-8674(92)90144-2. View

2.
Muller B, Sheen J . Arabidopsis cytokinin signaling pathway. Sci STKE. 2007; 2007(407):cm5. DOI: 10.1126/stke.4072007cm5. View

3.
Mashiguchi K, Tanaka K, Sakai T, Sugawara S, Kawaide H, Natsume M . The main auxin biosynthesis pathway in Arabidopsis. Proc Natl Acad Sci U S A. 2011; 108(45):18512-7. PMC: 3215075. DOI: 10.1073/pnas.1108434108. View

4.
Simkin A, Qian T, Caillet V, Michoux F, Ben Amor M, Lin C . Oleosin gene family of Coffea canephora: quantitative expression analysis of five oleosin genes in developing and germinating coffee grain. J Plant Physiol. 2006; 163(7):691-708. DOI: 10.1016/j.jplph.2005.11.008. View

5.
Chen X, Zhang M, Tan J, Huang S, Wang C, Zhang H . Comparative transcriptome analysis provides insights into molecular mechanisms for parthenocarpic fruit development in eggplant (Solanum melongena L.). PLoS One. 2017; 12(6):e0179491. PMC: 5467848. DOI: 10.1371/journal.pone.0179491. View