» Articles » PMID: 36167829

TP53 Mutations and RNA-binding Protein MUSASHI-2 Drive Resistance to PRMT5-targeted Therapy in B-cell Lymphoma

Abstract

To identify drivers of sensitivity and resistance to Protein Arginine Methyltransferase 5 (PRMT5) inhibition, we perform a genome-wide CRISPR/Cas9 screen. We identify TP53 and RNA-binding protein MUSASHI2 (MSI2) as the top-ranked sensitizer and driver of resistance to specific PRMT5i, GSK-591, respectively. TP53 deletion and TP53 mutation are biomarkers of resistance to GSK-591. PRMT5 expression correlates with MSI2 expression in lymphoma patients. MSI2 depletion and pharmacological inhibition using Ro 08-2750 (Ro) both synergize with GSK-591 to reduce cell growth. Ro reduces MSI2 binding to its global targets and dual treatment of Ro and PRMT5 inhibitors result in synergistic gene expression changes including cell cycle, P53 and MYC signatures. Dual MSI2 and PRMT5 inhibition further blocks c-MYC and BCL-2 translation. BCL-2 depletion or inhibition with venetoclax synergizes with a PRMT5 inhibitor by inducing reduced cell growth and apoptosis. Thus, we propose a therapeutic strategy in lymphoma that combines PRMT5 with MSI2 or BCL-2 inhibition.

Citing Articles

TP53 and KMT2D mutations associated with worse prognosis in peripheral T-cell lymphomas.

Wang L, Yang L, Guan F, Chen J, Cheng Y, Miao Y Cancer Med. 2024; 13(14):e70027.

PMID: 39041683 PMC: 11264255. DOI: 10.1002/cam4.70027.


Resistance to PRMT5-targeted therapy in mantle cell lymphoma.

Long M, Koirala S, Sloan S, Brown-Burke F, Weigel C, Villagomez L Blood Adv. 2023; 8(1):150-163.

PMID: 37782774 PMC: 10787272. DOI: 10.1182/bloodadvances.2023010554.


The Metabolism and Immune Environment in Diffuse Large B-Cell Lymphoma.

Wu J, Meng F, Ran D, Song Y, Dang Y, Lai F Metabolites. 2023; 13(6).

PMID: 37367892 PMC: 10300995. DOI: 10.3390/metabo13060734.


Exploiting PRMT5 as a target for combination therapy in mantle cell lymphoma characterized by frequent ATM and TP53 mutations.

Che Y, Liu Y, Yao Y, Hill H, Li Y, Cai Q Blood Cancer J. 2023; 13(1):27.

PMID: 36797243 PMC: 9935633. DOI: 10.1038/s41408-023-00799-6.


Rationally designed inhibitors of the Musashi protein-RNA interaction by hotspot mimicry.

Bai N, Adeshina Y, Bychkov I, Xia Y, Gowthaman R, Miller S Res Sq. 2023; .

PMID: 36711552 PMC: 9882606. DOI: 10.21203/rs.3.rs-2395172/v1.


References
1.
Meister G, Fischer U . Assisted RNP assembly: SMN and PRMT5 complexes cooperate in the formation of spliceosomal UsnRNPs. EMBO J. 2002; 21(21):5853-63. PMC: 131082. DOI: 10.1093/emboj/cdf585. View

2.
Boriack-Sjodin P, Swinger K . Protein Methyltransferases: A Distinct, Diverse, and Dynamic Family of Enzymes. Biochemistry. 2015; 55(11):1557-69. DOI: 10.1021/acs.biochem.5b01129. View

3.
Palacios F, Yan X, Ferrer G, Chen S, Vergani S, Yang X . Musashi 2 influences chronic lymphocytic leukemia cell survival and growth making it a potential therapeutic target. Leukemia. 2021; 35(4):1037-1052. PMC: 8024198. DOI: 10.1038/s41375-020-01115-y. View

4.
Gerhart S, Kellner W, Thompson C, Pappalardi M, Zhang X, Montes de Oca R . Activation of the p53-MDM4 regulatory axis defines the anti-tumour response to PRMT5 inhibition through its role in regulating cellular splicing. Sci Rep. 2018; 8(1):9711. PMC: 6018746. DOI: 10.1038/s41598-018-28002-y. View

5.
Park S, Gonen M, Vu L, Minuesa G, Tivnan P, Barlowe T . Musashi2 sustains the mixed-lineage leukemia-driven stem cell regulatory program. J Clin Invest. 2015; 125(3):1286-98. PMC: 4362230. DOI: 10.1172/JCI78440. View