» Articles » PMID: 36142857

Molecular Pathways of WRKY Genes in Regulating Plant Salinity Tolerance

Overview
Journal Int J Mol Sci
Publisher MDPI
Date 2022 Sep 23
PMID 36142857
Authors
Affiliations
Soon will be listed here.
Abstract

Salinity is a natural and anthropogenic process that plants overcome using various responses. Salinity imposes a two-phase effect, simplified into the initial osmotic challenges and subsequent salinity-specific ion toxicities from continual exposure to sodium and chloride ions. Plant responses to salinity encompass a complex gene network involving osmotic balance, ion transport, antioxidant response, and hormone signaling pathways typically mediated by transcription factors. One particular transcription factor mega family, , is a principal regulator of salinity responses. Here, we categorize a collection of known salinity-responding and summarize their molecular pathways. collectively play a part in regulating osmotic balance, ion transport response, antioxidant response, and hormone signaling pathways in plants. Particular attention is given to the hormone signaling pathway to illuminate the relationship between and abscisic acid signaling. Observed trends among are highlighted, including group II as major regulators of the salinity response. We recommend renaming existing and adopting a naming system to a standardized format based on protein structure.

Citing Articles

Regulation of Root Exudation in Wheat Plants in Response to Alkali Stress.

Wang H, Zhao S, Qi Z, Yang C, Ding D, Xiao B Plants (Basel). 2024; 13(9).

PMID: 38732442 PMC: 11085862. DOI: 10.3390/plants13091227.


Genome-wide identification of WRKY transcription factors in Casuarina equisetifolia and the function analysis of CeqWRKY11 in response to NaCl/NaHCO stresses.

Zhao X, Qi G, Liu J, Chen K, Miao X, Hussain J BMC Plant Biol. 2024; 24(1):376.

PMID: 38714947 PMC: 11077731. DOI: 10.1186/s12870-024-04889-w.


Genomic analyses provide insights into the evolution and salinity adaptation of halophyte Tamarix chinensis.

Liu J, Fang H, Liang Q, Dong Y, Wang C, Yan L Gigascience. 2023; 12.

PMID: 37494283 PMC: 10370455. DOI: 10.1093/gigascience/giad053.


Improvement of Seed Germination under Salt Stress via Overexpressing Caffeic Acid O-methyltransferase 1 (SlCOMT1) in Solanum lycopersicum L.

Ge L, Yang X, Liu Y, Tang H, Wang Q, Chu S Int J Mol Sci. 2023; 24(1).

PMID: 36614180 PMC: 9821337. DOI: 10.3390/ijms24010734.

References
1.
He G, Xu J, Wang Y, Liu J, Li P, Chen M . Drought-responsive WRKY transcription factor genes TaWRKY1 and TaWRKY33 from wheat confer drought and/or heat resistance in Arabidopsis. BMC Plant Biol. 2016; 16(1):116. PMC: 4877946. DOI: 10.1186/s12870-016-0806-4. View

2.
Maeo K, Hayashi S, Morikami A, Nakamura K . Role of conserved residues of the WRKY domain in the DNA-binding of tobacco WRKY family proteins. Biosci Biotechnol Biochem. 2002; 65(11):2428-36. DOI: 10.1271/bbb.65.2428. View

3.
Li P, Song A, Gao C, Wang L, Wang Y, Sun J . Chrysanthemum WRKY gene CmWRKY17 negatively regulates salt stress tolerance in transgenic chrysanthemum and Arabidopsis plants. Plant Cell Rep. 2015; 34(8):1365-78. DOI: 10.1007/s00299-015-1793-x. View

4.
Lee F, Yeap W, Ross Appleton D, Ho C, Kulaveerasingam H . Identification of drought responsive Elaeis guineensis WRKY transcription factors with sensitivity to other abiotic stresses and hormone treatments. BMC Genomics. 2022; 23(1):164. PMC: 8882277. DOI: 10.1186/s12864-022-08378-y. View

5.
Huang S, Gao Y, Liu J, Peng X, Niu X, Fei Z . Genome-wide analysis of WRKY transcription factors in Solanum lycopersicum. Mol Genet Genomics. 2012; 287(6):495-513. DOI: 10.1007/s00438-012-0696-6. View