» Articles » PMID: 36141105

Local Intrinsic Dimensionality, Entropy and Statistical Divergences

Overview
Journal Entropy (Basel)
Publisher MDPI
Date 2022 Sep 23
PMID 36141105
Authors
Affiliations
Soon will be listed here.
Abstract

Properties of data distributions can be assessed at both global and local scales. At a highly localized scale, a fundamental measure is the local intrinsic dimensionality (LID), which assesses growth rates of the cumulative distribution function within a restricted neighborhood and characterizes properties of the geometry of a local neighborhood. In this paper, we explore the connection of LID to other well known measures for complexity assessment and comparison, namely, entropy and statistical distances or divergences. In an asymptotic context, we develop analytical new expressions for these quantities in terms of LID. This reveals the fundamental nature of LID as a building block for characterizing and comparing data distributions, opening the door to new methods for distributional analysis at a local scale.

Citing Articles

Correlations of Cross-Entropy Loss in Machine Learning.

Connor R, Dearle A, Claydon B, Vadicamo L Entropy (Basel). 2024; 26(6).

PMID: 38920500 PMC: 11203011. DOI: 10.3390/e26060491.

References
1.
Carter K, Raich R, Finn W, Hero 3rd A . FINE: fisher information nonparametric embedding. IEEE Trans Pattern Anal Mach Intell. 2009; 31(11):2093-8. DOI: 10.1109/TPAMI.2009.67. View

2.
Johnsson K, Soneson C, Fontes M . Low Bias Local Intrinsic Dimension Estimation from Expected Simplex Skewness. IEEE Trans Pattern Anal Mach Intell. 2015; 37(1):196-202. DOI: 10.1109/TPAMI.2014.2343220. View

3.
Zhou S, Tordesillas A, Pouragha M, Bailey J, Bondell H . On local intrinsic dimensionality of deformation in complex materials. Sci Rep. 2021; 11(1):10216. PMC: 8119735. DOI: 10.1038/s41598-021-89328-8. View

4.
Faranda D, Messori G, Yiou P . Dynamical proxies of North Atlantic predictability and extremes. Sci Rep. 2017; 7:41278. PMC: 5264183. DOI: 10.1038/srep41278. View

5.
Facco E, dErrico M, Rodriguez A, Laio A . Estimating the intrinsic dimension of datasets by a minimal neighborhood information. Sci Rep. 2017; 7(1):12140. PMC: 5610237. DOI: 10.1038/s41598-017-11873-y. View