6.
Jin H, Lin T, Han P, Yao Y, Zheng D, Hao J
. Efficacy of Raman spectroscopy in the diagnosis of bladder cancer: A systematic review and meta-analysis. Medicine (Baltimore). 2019; 98(47):e18066.
PMC: 6882629.
DOI: 10.1097/MD.0000000000018066.
View
7.
Jin H, He X, Zhou H, Zhang M, Tang Q, Lin L
. Efficacy of raman spectroscopy in the diagnosis of kidney cancer: A systematic review and meta-analysis. Medicine (Baltimore). 2020; 99(27):e20933.
PMC: 7337610.
DOI: 10.1097/MD.0000000000020933.
View
8.
Zhang J, Fan Y, Song Y, Xu J
. Accuracy of Raman spectroscopy for differentiating skin cancer from normal tissue. Medicine (Baltimore). 2018; 97(34):e12022.
PMC: 6112956.
DOI: 10.1097/MD.0000000000012022.
View
9.
Hagan S, Martin E, Enriquez-de-Salamanca A
. Tear fluid biomarkers in ocular and systemic disease: potential use for predictive, preventive and personalised medicine. EPMA J. 2016; 7:15.
PMC: 4942926.
DOI: 10.1186/s13167-016-0065-3.
View
10.
Lee S, Kim J
. Label-Free Raman Spectroscopic Techniques with Morphological and Optical Characterization for Cancer Cell Analysis. Adv Exp Med Biol. 2021; 1310:385-399.
DOI: 10.1007/978-981-33-6064-8_14.
View
11.
Gao N, Wang Q, Tang J, Yao S, Li H, Yue X
. Non-invasive SERS serum detection technology combined with multivariate statistical algorithm for simultaneous screening of cervical cancer and breast cancer. Anal Bioanal Chem. 2021; 413(19):4775-4784.
DOI: 10.1007/s00216-021-03431-3.
View
12.
Cennamo G, Montorio D, Morra V, Criscuolo C, Lanzillo R, Salvatore E
. Surface-enhanced Raman spectroscopy of tears: toward a diagnostic tool for neurodegenerative disease identification. J Biomed Opt. 2020; 25(8):1-12.
PMC: 7406892.
DOI: 10.1117/1.JBO.25.8.087002.
View
13.
Markina N, Zakharevich A, Markin A
. Determination of methotrexate in spiked human urine using SERS-active sorbent. Anal Bioanal Chem. 2020; 412(28):7757-7766.
DOI: 10.1007/s00216-020-02932-x.
View
14.
Wang Z, Zong S, Wu L, Zhu D, Cui Y
. SERS-Activated Platforms for Immunoassay: Probes, Encoding Methods, and Applications. Chem Rev. 2017; 117(12):7910-7963.
DOI: 10.1021/acs.chemrev.7b00027.
View
15.
Zheng C, Liang L, Xu S, Zhang H, Hu C, Bi L
. The use of Au@SiO2 shell-isolated nanoparticle-enhanced Raman spectroscopy for human breast cancer detection. Anal Bioanal Chem. 2014; 406(22):5425-32.
DOI: 10.1007/s00216-014-7967-5.
View
16.
Shang L, Ma D, Fu J, Lu Y, Zhao Y, Xu X
. Fluorescence imaging and Raman spectroscopy applied for the accurate diagnosis of breast cancer with deep learning algorithms. Biomed Opt Express. 2020; 11(7):3673-3683.
PMC: 7510916.
DOI: 10.1364/BOE.394772.
View
17.
MOSES L, Shapiro D, Littenberg B
. Combining independent studies of a diagnostic test into a summary ROC curve: data-analytic approaches and some additional considerations. Stat Med. 1993; 12(14):1293-316.
DOI: 10.1002/sim.4780121403.
View
18.
Haka A, Volynskaya Z, Gardecki J, Nazemi J, Shenk R, Wang N
. Diagnosing breast cancer using Raman spectroscopy: prospective analysis. J Biomed Opt. 2009; 14(5):054023.
PMC: 2774977.
DOI: 10.1117/1.3247154.
View
19.
Han B, Du Y, Fu T, Fan Z, Xu S, Hu C
. Differences and Relationships Between Normal and Atypical Ductal Hyperplasia, Ductal Carcinoma In Situ, and Invasive Ductal Carcinoma Tissues in the Breast Based on Raman Spectroscopy. Appl Spectrosc. 2017; 71(2):300-307.
DOI: 10.1177/0003702816681009.
View
20.
Lazaro-Pacheco D, Shaaban A, Titiloye N, Rehman S, Rehman I
. Elucidating the chemical and structural composition of breast cancer using Raman micro-spectroscopy. EXCLI J. 2021; 20:1118-1132.
PMC: 8326498.
DOI: 10.17179/excli2021-3962.
View