» Articles » PMID: 36129981

Gene Drive Mosquitoes Can Aid Malaria Elimination by Retarding Sporogonic Development

Overview
Journal Sci Adv
Specialties Biology
Science
Date 2022 Sep 21
PMID 36129981
Authors
Affiliations
Soon will be listed here.
Abstract

Gene drives hold promise for the genetic control of malaria vectors. The development of vector population modification strategies hinges on the availability of effector mechanisms impeding parasite development in transgenic mosquitoes. We augmented a midgut gene of the malaria mosquito to secrete two exogenous antimicrobial peptides, magainin 2 and melittin. This small genetic modification, capable of efficient nonautonomous gene drive, hampers oocyst development in both and . It delays the release of infectious sporozoites, while it simultaneously reduces the life span of homozygous female transgenic mosquitoes. Modeling the spread of this modification using a large-scale agent-based model of malaria epidemiology reveals that it can break the cycle of disease transmission across a range of transmission intensities.

Citing Articles

A Y chromosome-linked genome editor for efficient population suppression in the malaria vector Anopheles gambiae.

Tolosana I, Willis K, Gribble M, Phillimore L, Burt A, Nolan T Nat Commun. 2025; 16(1):206.

PMID: 39747012 PMC: 11696527. DOI: 10.1038/s41467-024-55391-8.


Genomic analyses revealed low genetic variation in the intron-exon boundary of the doublesex gene within the natural populations of An. gambiae s.l. in Burkina Faso.

Kientega M, Morianou I, Traore N, Kranjc N, Kabore H, Zongo O BMC Genomics. 2024; 25(1):1207.

PMID: 39695373 PMC: 11657786. DOI: 10.1186/s12864-024-11127-y.


Patterns of Gene Flow in Populations From Two African Oceanic Islands.

Campos M, Rasic G, Viegas J, Cornel A, Pinto J, Lanzaro G Evol Appl. 2024; 17(11):e70044.

PMID: 39600347 PMC: 11589655. DOI: 10.1111/eva.70044.


Post-release monitoring pathway for the deployment of gene drive-modified mosquitoes for malaria control in Africa.

Ogoyi D, Njagi J, Tonui W, Dass B, Quemada H, James S Malar J. 2024; 23(1):351.

PMID: 39567982 PMC: 11580452. DOI: 10.1186/s12936-024-05179-4.


Innovative strategies and challenges mosquito-borne disease control amidst climate change.

Zhang Y, Wang M, Huang M, Zhao J Front Microbiol. 2024; 15:1488106.

PMID: 39564491 PMC: 11573536. DOI: 10.3389/fmicb.2024.1488106.


References
1.
Isaacs A, Li F, Jasinskiene N, Chen X, Nirmala X, Marinotti O . Engineered resistance to Plasmodium falciparum development in transgenic Anopheles stephensi. PLoS Pathog. 2011; 7(4):e1002017. PMC: 3080844. DOI: 10.1371/journal.ppat.1002017. View

2.
Pham T, Phong C, Bennett J, Hwang K, Jasinskiene N, Parker K . Experimental population modification of the malaria vector mosquito, Anopheles stephensi. PLoS Genet. 2019; 15(12):e1008440. PMC: 6922335. DOI: 10.1371/journal.pgen.1008440. View

3.
Nash A, Urdaneta G, Beaghton A, Hoermann A, Papathanos P, Christophides G . Integral gene drives for population replacement. Biol Open. 2018; 8(1). PMC: 6361204. DOI: 10.1242/bio.037762. View

4.
Gledhill J, Walker J . Inhibition sites in F1-ATPase from bovine heart mitochondria. Biochem J. 2004; 386(Pt 3):591-8. PMC: 1134879. DOI: 10.1042/BJ20041513. View

5.
Gwadz R, Kaslow D, Lee J, Maloy W, Zasloff M, MILLER L . Effects of magainins and cecropins on the sporogonic development of malaria parasites in mosquitoes. Infect Immun. 1989; 57(9):2628-33. PMC: 313504. DOI: 10.1128/iai.57.9.2628-2633.1989. View