Structural Organization, Evolution, and Distribution of Viral Pyrimidine Dimer-DNA Glycosylases
Overview
Overview
Authors
Affiliations
Affiliations
Soon will be listed here.
Abstract
Supplementary Information: The online version contains supplementary material available at 10.1007/s12551-022-00972-4.
Citing Articles
Tsygankov A, Riznichenko G, Rubin A, Solovchenko A, Tuchin V Biophys Rev. 2022; 14(4):743-749.
PMID: 35990254 PMC: 9383676. DOI: 10.1007/s12551-022-00993-z.
References
1.
Kumar S, Stecher G, Li M, Knyaz C, Tamura K
. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol Biol Evol. 2018; 35(6):1547-1549.
PMC: 5967553.
DOI: 10.1093/molbev/msy096.
View
2.
DULBECCO R
. Experiments on photoreactivation of inactive bacteriophages. J Cell Physiol Suppl. 1952; 39(Suppl. 1):125-8.
DOI: 10.1002/jcp.1030390413.
View
3.
Dizdaroglu M, Zastawny T, Carmical J, Lloyd R
. A novel DNA N-glycosylase activity of E. coli T4 endonuclease V that excises 4,6-diamino-5-formamidopyrimidine from DNA, a UV-radiation- and hydroxyl radical-induced product of adenine. Mutat Res. 1996; 362(1):1-8.
DOI: 10.1016/0921-8777(95)00025-9.
View
4.
Marshall C, Santangelo T
. Archaeal DNA Repair Mechanisms. Biomolecules. 2020; 10(11).
PMC: 7690668.
DOI: 10.3390/biom10111472.
View
5.
Harm W
. Recovery of UV-inactivated E. coli cells by the v-gene action of phage T4. Mutat Res. 1968; 6(1):175-9.
DOI: 10.1016/0027-5107(68)90115-2.
View