» Articles » PMID: 36103744

Computational Exploration of the Dual Role of the Phytochemical Fortunellin: Antiviral Activities Against SARS-CoV-2 and Immunomodulatory Abilities Against the Host

Abstract

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infections generate approximately one million virions per day, and the majority of available antivirals are ineffective against it due to the virus's inherent genetic mutability. This necessitates the investigation of concurrent inhibition of multiple SARS-CoV-2 targets. We show that fortunellin (acacetin 7-O-neohesperidoside), a phytochemical, is a promising candidate for preventing and treating coronavirus disease (COVID-19) by targeting multiple key viral target proteins. Fortunellin supports protective immunity while inhibiting pro-inflammatory cytokines and apoptosis pathways and protecting against tissue damage. Fortunellin is a phytochemical found in Gojihwadi kwath, an Indian traditional Ayurvedic formulation with an antiviral activity that is effective in COVID-19 patients. The mechanistic action of its antiviral activity, however, is unknown. The current study comprehensively evaluates the potential therapeutic mechanisms of fortunellin in preventing and treating COVID-19. We have used molecular docking, molecular dynamics simulations, free-energy calculations, host target mining of fortunellin, gene ontology enrichment, pathway analyses, and protein-protein interaction analysis. We discovered that fortunellin reliably binds to key targets that are necessary for viral replication, growth, invasion, and infectivity including Nucleocapsid (N-CTD) (-54.62 kcal/mol), Replicase-monomer at NSP-8 binding site (-34.48 kcal/mol), Replicase-dimer interface (-31.29 kcal/mol), Helicase (-30.02 kcal/mol), Papain-like-protease (-28.12 kcal/mol), 2'-O-methyltransferase (-23.17 kcal/mol), Main-protease (-21.63 kcal/mol), Replicase-monomer at dimer interface (-22.04 kcal/mol), RNA-dependent-RNA-polymerase (-19.98 kcal/mol), Nucleocapsid-NTD (-16.92 kcal/mol), and Endoribonuclease (-16.81 kcal/mol). Furthermore, we identify and evaluate the potential human targets of fortunellin and its effect on the SARS-CoV-2 infected tissues, including normal-human-bronchial-epithelium (NHBE) and lung cells and organoids such as pancreatic, colon, liver, and cornea using a network pharmacology approach. Thus, our findings indicate that fortunellin has a dual role; multi-target antiviral activities against SARS-CoV-2 and immunomodulatory capabilities against the host.

Citing Articles

Fortunellin ameliorates LPS-induced acute lung injury, inflammation, and collagen deposition by restraining the TLR4/NF-κB/NLRP3 pathway.

Liu D, Guo R, Shi B, Chen M, Weng S, Weng J Immun Inflamm Dis. 2024; 12(3):e1164.

PMID: 38501503 PMC: 10949398. DOI: 10.1002/iid3.1164.

References
1.
Rani J, Bhargav A, Khan F, Ramachandran S, Lai D, Bajpai U . prediction of natural compounds as potential multi-target inhibitors of structural proteins of SARS-CoV-2. J Biomol Struct Dyn. 2021; 40(22):12118-12134. PMC: 8425474. DOI: 10.1080/07391102.2021.1968497. View

2.
Kim S, Chen J, Cheng T, Gindulyte A, He J, He S . PubChem 2019 update: improved access to chemical data. Nucleic Acids Res. 2018; 47(D1):D1102-D1109. PMC: 6324075. DOI: 10.1093/nar/gky1033. View

3.
Zhao C, Zhang Y, Liu H, Li P, Zhang H, Cheng G . Fortunellin protects against high fructose-induced diabetic heart injury in mice by suppressing inflammation and oxidative stress via AMPK/Nrf-2 pathway regulation. Biochem Biophys Res Commun. 2017; 490(2):552-559. DOI: 10.1016/j.bbrc.2017.06.076. View

4.
Callaway E . Heavily mutated Omicron variant puts scientists on alert. Nature. 2021; 600(7887):21. DOI: 10.1038/d41586-021-03552-w. View

5.
Rabie A . Discovery of Taroxaz-104: The first potent antidote of SARS-CoV-2 VOC-202012/01 strain. J Mol Struct. 2021; 1246:131106. PMC: 8282935. DOI: 10.1016/j.molstruc.2021.131106. View