» Articles » PMID: 36083899

Transient RNA Structures Cause Aberrant Influenza Virus Replication and Innate Immune Activation

Overview
Journal Sci Adv
Specialties Biology
Science
Date 2022 Sep 9
PMID 36083899
Authors
Affiliations
Soon will be listed here.
Abstract

During infection, the influenza A virus RNA polymerase produces both full-length and aberrant RNA molecules, such as defective viral genomes (DVGs) and mini viral RNAs (mvRNAs). Subsequent innate immune activation involves the binding of host pathogen receptor retinoic acid-inducible gene I (RIG-I) to viral RNAs. However, it is not clear what factors determine which influenza A virus RNAs are RIG-I agonists. Here, we provide evidence that RNA structures, called template loops (t-loops), stall the viral RNA polymerase and contribute to innate immune activation by mvRNAs during influenza A virus infection. Impairment of replication by t-loops depends on the formation of an RNA duplex near the template entry and exit channels of the RNA polymerase, and this effect is enhanced by mutation of the template exit path from the RNA polymerase active site. Overall, these findings are suggestive of a mechanism involving polymerase stalling that links aberrant viral replication to the activation of the innate immune response.

Citing Articles

Analysis of NS2-dependent effects on influenza PB1 segment extends replication requirements beyond the canonical promoter.

Swaminath S, Mendes M, Zhang Y, Remick K, Mejia I, Guereca M Nat Commun. 2025; 16(1):1875.

PMID: 39987189 PMC: 11846981. DOI: 10.1038/s41467-025-57092-2.


Quantification of influenza virus mini viral RNAs using Cas13.

Lamb C, Pitre E, Ajufo S, Rigby C, Bisht K, Oade M RNA. 2024; 31(1):126-138.

PMID: 39419543 PMC: 11648933. DOI: 10.1261/rna.080174.124.


The role of structure in regulatory RNA elements.

Tants J, Schlundt A Biosci Rep. 2024; 44(10).

PMID: 39364891 PMC: 11499389. DOI: 10.1042/BSR20240139.


Efficient genome replication in influenza A virus requires NS2 and sequence beyond the canonical promoter.

Swaminath S, Mendes M, Zhang Y, Remick K, Mejia I, Guereca M bioRxiv. 2024; .

PMID: 39314307 PMC: 11419028. DOI: 10.1101/2024.09.10.612348.


Structural Impact of the Interaction of the Influenza A Virus Nucleoprotein with Genomic RNA Segments.

Quignon E, Ferhadian D, Hache A, Vivet-Boudou V, Isel C, Printz-Schweigert A Viruses. 2024; 16(3).

PMID: 38543786 PMC: 10974462. DOI: 10.3390/v16030421.


References
1.
Fodor E, Te Velthuis A . Structure and Function of the Influenza Virus Transcription and Replication Machinery. Cold Spring Harb Perspect Med. 2019; 10(9). PMC: 7334866. DOI: 10.1101/cshperspect.a038398. View

2.
Forero A, Tisoncik-Go J, Watanabe T, Zhong G, Hatta M, Tchitchek N . The 1918 Influenza Virus PB2 Protein Enhances Virulence through the Disruption of Inflammatory and Wnt-Mediated Signaling in Mice. J Virol. 2015; 90(5):2240-53. PMC: 4810726. DOI: 10.1128/JVI.02974-15. View

3.
Dadonaite B, Gilbertson B, Knight M, Trifkovic S, Rockman S, Laederach A . The structure of the influenza A virus genome. Nat Microbiol. 2019; 4(11):1781-1789. PMC: 7191640. DOI: 10.1038/s41564-019-0513-7. View

4.
Lipsitch M, Barclay W, Raman R, Russell C, Belser J, Cobey S . Viral factors in influenza pandemic risk assessment. Elife. 2016; 5. PMC: 5156527. DOI: 10.7554/eLife.18491. View

5.
Gruber A, Bernhart S, Lorenz R . The ViennaRNA web services. Methods Mol Biol. 2015; 1269:307-26. DOI: 10.1007/978-1-4939-2291-8_19. View