6.
Lin Y, Linask K, Mallon B, Johnson K, Klein M, Beers J
. Heparin Promotes Cardiac Differentiation of Human Pluripotent Stem Cells in Chemically Defined Albumin-Free Medium, Enabling Consistent Manufacture of Cardiomyocytes. Stem Cells Transl Med. 2017; 6(2):527-538.
PMC: 5442822.
DOI: 10.5966/sctm.2015-0428.
View
7.
Argyo C, Cauda V, Engelke H, Radler J, Bein G, Bein T
. Heparin-coated colloidal mesoporous silica nanoparticles efficiently bind to antithrombin as an anticoagulant drug-delivery system. Chemistry. 2011; 18(2):428-32.
DOI: 10.1002/chem.201102926.
View
8.
Watarai A, Schirmer L, Thones S, Freudenberg U, Werner C, Simon J
. TGFβ functionalized starPEG-heparin hydrogels modulate human dermal fibroblast growth and differentiation. Acta Biomater. 2015; 25:65-75.
DOI: 10.1016/j.actbio.2015.07.036.
View
9.
Simon Ting S, Whitelock J, Tomic R, Gunawan C, Teoh W, Amal R
. Cellular uptake and activity of heparin functionalised cerium oxide nanoparticles in monocytes. Biomaterials. 2013; 34(17):4377-86.
DOI: 10.1016/j.biomaterials.2013.02.042.
View
10.
Venezia V, Pota G, Silvestri B, Vitiello G, Di Donato P, Landi G
. A study on structural evolution of hybrid humic Acids-SiO nanostructures in pure water: Effects on physico-chemical and functional properties. Chemosphere. 2021; 287(Pt 1):131985.
DOI: 10.1016/j.chemosphere.2021.131985.
View
11.
Bromfield S, Wilde E, Smith D
. Heparin sensing and binding - taking supramolecular chemistry towards clinical applications. Chem Soc Rev. 2013; 42(23):9184-95.
DOI: 10.1039/c3cs60278h.
View
12.
Xiao Z, Levy-Nissenbaum E, Alexis F, Luptak A, Teply B, Chan J
. Engineering of targeted nanoparticles for cancer therapy using internalizing aptamers isolated by cell-uptake selection. ACS Nano. 2012; 6(1):696-704.
PMC: 3515647.
DOI: 10.1021/nn204165v.
View
13.
Adnan M, Dalod A, Balci M, Glaum J, Einarsrud M
. In Situ Synthesis of Hybrid Inorganic⁻Polymer Nanocomposites. Polymers (Basel). 2019; 10(10).
PMC: 6403593.
DOI: 10.3390/polym10101129.
View
14.
Arlov O, Skjak-Braek G
. Sulfated Alginates as Heparin Analogues: A Review of Chemical and Functional Properties. Molecules. 2017; 22(5).
PMC: 6154561.
DOI: 10.3390/molecules22050778.
View
15.
Ma S, Chen Y, Feng J, Liu J, Zuo X, Chen X
. One-Step Synthesis of Water-Dispersible and Biocompatible Silicon Nanoparticles for Selective Heparin Sensing and Cell Imaging. Anal Chem. 2016; 88(21):10474-10481.
DOI: 10.1021/acs.analchem.6b02448.
View
16.
Mei L, Liu Y, Zhang H, Zhang Z, Gao H, He Q
. Antitumor and Antimetastasis Activities of Heparin-based Micelle Served As Both Carrier and Drug. ACS Appl Mater Interfaces. 2016; 8(15):9577-89.
DOI: 10.1021/acsami.5b12347.
View
17.
Della Sala F, Silvestri T, Borzacchiello A, Mayol L, Ambrosio L, Biondi M
. Hyaluronan-coated nanoparticles for active tumor targeting: Influence of polysaccharide molecular weight on cell uptake. Colloids Surf B Biointerfaces. 2021; 210:112240.
DOI: 10.1016/j.colsurfb.2021.112240.
View
18.
Fan X, Domszy R, Hu N, Yang A, Yang J, David A
. Synthesis of silica-alginate nanoparticles and their potential application as pH-responsive drug carriers. J Solgel Sci Technol. 2020; 91(1):11-20.
PMC: 7451248.
DOI: 10.1007/s10971-019-04995-4.
View
19.
Silvestri B, Pezzella A, Luciani G, Costantini A, Tescione F, Branda F
. Heparin conjugated silica nanoparticle synthesis. Mater Sci Eng C Mater Biol Appl. 2021; 32(7):2037-2041.
DOI: 10.1016/j.msec.2012.05.018.
View
20.
Vitiello G, Venezia V, Verrillo M, Nuzzo A, Houston J, Cimino S
. Hybrid humic acid/titanium dioxide nanomaterials as highly effective antimicrobial agents against gram(-) pathogens and antibiotic contaminants in wastewater. Environ Res. 2020; 193:110562.
DOI: 10.1016/j.envres.2020.110562.
View