» Articles » PMID: 36077918

Effect of Autochthonous Nepalese Fruits on Nutrient Degradation, Fermentation Kinetics, Total Gas Production, and Methane Production in Rumen Fermentation

Overview
Journal Animals (Basel)
Date 2022 Sep 9
PMID 36077918
Authors
Affiliations
Soon will be listed here.
Abstract

The objective of this study was to determine the effect of autochthonous Nepalese fruits on nutrient degradation, fermentation kinetics, total gas production, and methane production in in-vitro rumen fermentation. The fruits of Terminalia chebula (HA), Terminalia bellirica (BA), and Triphala churna (TC), a commercial mixture with equal parts (33.3% DM basis) of Phyllanthus emblica, Terminalia bellirica, and Terminalia chebula, were used. These were tested at three inclusion levels of 20% 40% and 100% of the total sample (as dry matter) in maize silage (MS). MS was used as a control (0% additive). These 10 treatments were tested for two 48-h incubations with quadruplicate samples using rumen fluid from 2 heifers. Total gas production (TGP: mL at standard temperature and pressure (STP)/g DM), methane production (expressed as % and mL/g DM), and volatile fatty acids were determined. After incubations, the filtrate was used to measure pH and volatile fatty acids (VFA), while the residue was used to measure degraded dry matter (dDM) and calculate the partitioning factor (PF48) and theoretical short-chain fatty acid concentration (tVFA). Rumen fluid pH linearly (p < 0.01) decreased in all treatments with increasing dose during fermentation. The CH4% was less in all three treatments with 100% autochthonous plants than in control, but there were no significant linear or quadratic effects for increasing BA, HA, and TC doses. The PF48 increased for all treatments with a significant linear and quadratic effect (p < 0.05) of increasing dose. Compared to MS, the inclusion of autochthonous plants increased the total volatile fatty acids, with no significant dose effects. The tVFA linearly decreased (p > 0.05) with an increasing dose of BA and HA. All treatments showed quadratic effects on tVFA (p < 0.05) with increasing dose. Increasing TC dose linearly (p < 0.05) and quadratically (p < 0.05) increased total VFA, while increasing HA dose had only a quadratic (p < 0.05) effect on total VFA. All treatments reduced total gas production (TGP) and methane concentration (CH4%) when compared to MS. The tested autochthonous fruits can be used as additives with a basal feed diet to reduce enteric methane emissions. The most effective anti-methanogenic treatment was 40% HA, which resulted in 18% methane reduction.

Citing Articles

Combining widely targeted metabolomics and RNA-sequencing to reveal the function analysis of Linn. Juice-induced poultry macrophages.

Liu C, Jin J, Sun B Food Chem (Oxf). 2024; 9:100223.

PMID: 39399737 PMC: 11470471. DOI: 10.1016/j.fochms.2024.100223.


Effect of Acacia mearnsii forage or tannin extract on rumen dry matter and crude protein degradation.

Mhlongo L, Kenyon P, Nsahlai I J Anim Physiol Anim Nutr (Berl). 2024; 109(1):22-29.

PMID: 39119695 PMC: 11731477. DOI: 10.1111/jpn.14033.


Temporal dynamics of volatile fatty acids profile, methane production, and prokaryotic community in an rumen fermentation system fed with maize silage.

Dhakal R, Neves A, Sapkota R, Khanal P, Ellegaard-Jensen L, Winding A Front Microbiol. 2024; 15:1271599.

PMID: 38444805 PMC: 10912478. DOI: 10.3389/fmicb.2024.1271599.

References
1.
Correddu F, Lunesu M, Buffa G, Atzori A, Nudda A, Battacone G . Can Agro-Industrial By-Products Rich in Polyphenols be Advantageously Used in the Feeding and Nutrition of Dairy Small Ruminants?. Animals (Basel). 2020; 10(1). PMC: 7022336. DOI: 10.3390/ani10010131. View

2.
Rana M, Tyagi A, Hossain S, Tyagi A . Effect of tanniniferous Terminalia chebula extract on rumen biohydrogenation, ∆(9)-desaturase activity, CLA content and fatty acid composition in longissimus dorsi muscle of kids. Meat Sci. 2011; 90(3):558-63. DOI: 10.1016/j.meatsci.2011.09.016. View

3.
Kumar S, Treloar B, Teh K, McKenzie C, Henderson G, Attwood G . Sharpea and Kandleria are lactic acid producing rumen bacteria that do not change their fermentation products when co-cultured with a methanogen. Anaerobe. 2018; 54:31-38. DOI: 10.1016/j.anaerobe.2018.07.008. View

4.
Varga G, Kolver E . Microbial and animal limitations to fiber digestion and utilization. J Nutr. 1997; 127(5 Suppl):819S-823S. DOI: 10.1093/jn/127.5.819S. View

5.
van Zijderveld S, Gerrits W, Apajalahti J, Newbold J, Dijkstra J, Leng R . Nitrate and sulfate: Effective alternative hydrogen sinks for mitigation of ruminal methane production in sheep. J Dairy Sci. 2010; 93(12):5856-66. DOI: 10.3168/jds.2010-3281. View