» Articles » PMID: 36077249

Tuning of Liver Sieve: The Interplay Between Actin and Myosin Regulatory Light Chain Regulates Fenestration Size and Number in Murine Liver Sinusoidal Endothelial Cells

Overview
Journal Int J Mol Sci
Publisher MDPI
Date 2022 Sep 9
PMID 36077249
Authors
Affiliations
Soon will be listed here.
Abstract

Liver sinusoidal endothelial cells (LSECs) facilitate the efficient transport of macromolecules and solutes between the blood and hepatocytes. The efficiency of this transport is realized via transcellular nanopores, called fenestrations. The mean fenestration size is 140 ± 20 nm, with the range from 50 nm to 350 nm being mostly below the limits of diffraction of visible light. The cellular mechanisms controlling fenestrations are still poorly understood. In this study, we tested a hypothesis that both Rho kinase (ROCK) and myosin light chain (MLC) kinase (MLCK)-dependent phosphorylation of MLC regulates fenestrations. We verified the hypothesis using a combination of several molecular inhibitors and by applying two high-resolution microscopy modalities: structured illumination microscopy (SIM) and scanning electron microscopy (SEM). We demonstrated precise, dose-dependent, and reversible regulation of the mean fenestration diameter within a wide range from 120 nm to 220 nm and the fine-tuning of the porosity in a range from ~0% up to 12% using the ROCK pathway. Moreover, our findings indicate that MLCK is involved in the formation of new fenestrations-after inhibiting MLCK, closed fenestrations cannot be reopened with other agents. We, therefore, conclude that the Rho-ROCK pathway is responsible for the control of the fenestration diameter, while the inhibition of MLCK prevents the formation of new fenestrations.

Citing Articles

Early and late phases of liver sinusoidal endothelial cell (LSEC) defenestration in mouse model of systemic inflammation.

Czyzynska-Cichon I, Kotlinowski J, Blacharczyk O, Giergiel M, Szymanowski K, Metwally S Cell Mol Biol Lett. 2024; 29(1):139.

PMID: 39528938 PMC: 11556108. DOI: 10.1186/s11658-024-00655-w.


Mouse liver sinusoidal endothelial cell responses to the glucocorticoid receptor agonist dexamethasone.

Bhandari S, Kyrrestad I, Simon-Santamaria J, Li R, Szafranska K, Dumitriu G Front Pharmacol. 2024; 15:1377136.

PMID: 39439887 PMC: 11494038. DOI: 10.3389/fphar.2024.1377136.


Tubulin-Targeted Therapy in Melanoma Increases the Cell Migration Potential by Activation of the Actomyosin Cytoskeleton─An In Vitro Study.

Luty M, Szydlak R, Pabijan J, Zemla J, Oevreeide I, Prot V ACS Biomater Sci Eng. 2024; 10(11):7155-7166.

PMID: 39436192 PMC: 11558564. DOI: 10.1021/acsbiomaterials.4c01226.


ADAMTS18-fibronectin interaction regulates the morphology of liver sinusoidal endothelial cells.

Wang L, He L, Yi W, Wang M, Xu F, Liu H iScience. 2024; 27(7):110273.

PMID: 39040056 PMC: 11261151. DOI: 10.1016/j.isci.2024.110273.


Protein disulfide isomerase A1 regulates fenestration dynamics in primary mouse liver sinusoidal endothelial cells (LSECs).

Czyzynska-Cichon I, Giergiel M, Kwiatkowski G, Kurpinska A, Wojnar-Lason K, Kaczara P Redox Biol. 2024; 72:103162.

PMID: 38669864 PMC: 11068635. DOI: 10.1016/j.redox.2024.103162.


References
1.
Poisson J, Lemoinne S, Boulanger C, Durand F, Moreau R, Valla D . Liver sinusoidal endothelial cells: Physiology and role in liver diseases. J Hepatol. 2016; 66(1):212-227. DOI: 10.1016/j.jhep.2016.07.009. View

2.
Somlyo A, Somlyo A . Ca2+ sensitivity of smooth muscle and nonmuscle myosin II: modulated by G proteins, kinases, and myosin phosphatase. Physiol Rev. 2003; 83(4):1325-58. DOI: 10.1152/physrev.00023.2003. View

3.
Zapotoczny B, Braet F, Kus E, Ginda-Makela K, Klejevskaja B, Campagna R . Actin-spectrin scaffold supports open fenestrae in liver sinusoidal endothelial cells. Traffic. 2019; 20(12):932-942. PMC: 6899910. DOI: 10.1111/tra.12700. View

4.
Yokomori H, Yoshimura K, Funakoshi S, Nagai T, Fujimaki K, Nomura M . Rho modulates hepatic sinusoidal endothelial fenestrae via regulation of the actin cytoskeleton in rat endothelial cells. Lab Invest. 2004; 84(7):857-64. DOI: 10.1038/labinvest.3700114. View

5.
Braet F, de Zanger R, Kalle W, Raap A, Tanke H, Wisse E . Comparative scanning, transmission and atomic force microscopy of the microtubular cytoskeleton in fenestrated liver endothelial cells. Scanning Microsc Suppl. 1996; 10:225-35; discussion 235-6. View