» Articles » PMID: 36068201

Generation of an Escherichia Coli Strain Growing on Methanol Via the Ribulose Monophosphate Cycle

Overview
Journal Nat Commun
Specialty Biology
Date 2022 Sep 6
PMID 36068201
Authors
Affiliations
Soon will be listed here.
Abstract

Methanol is a liquid with high energy storage capacity that holds promise as an alternative substrate to replace sugars in the biotechnology industry. It can be produced from CO or methane and its use does not compete with food and animal feed production. However, there are currently only limited biotechnological options for the valorization of methanol, which hinders its widespread adoption. Here, we report the conversion of the industrial platform organism Escherichia coli into a synthetic methylotroph that assimilates methanol via the energy efficient ribulose monophosphate cycle. Methylotrophy is achieved after evolution of a methanol-dependent E. coli strain over 250 generations in continuous chemostat culture. We demonstrate growth on methanol and biomass formation exclusively from the one-carbon source by C isotopic tracer analysis. In line with computational modeling, the methylotrophic E. coli strain optimizes methanol oxidation by upregulation of an improved methanol dehydrogenase, increasing ribulose monophosphate cycle activity, channeling carbon flux through the Entner-Doudoroff pathway and downregulating tricarboxylic acid cycle enzymes. En route towards sustainable bioproduction processes, our work lays the foundation for the efficient utilization of methanol as the dominant carbon and energy resource.

Citing Articles

Computation-aided designs enable developing auxotrophic metabolic sensors for wide-range glyoxylate and glycolate detection.

Orsi E, Schulz-Mirbach H, Cotton C, Satanowski A, Petri H, Arnold S Nat Commun. 2025; 16(1):2168.

PMID: 40038270 PMC: 11880463. DOI: 10.1038/s41467-025-57407-3.


Cell-Free Systems to Mimic and Expand Metabolism.

Rasor B, Erb T ACS Synth Biol. 2025; 14(2):316-322.

PMID: 39878226 PMC: 11852204. DOI: 10.1021/acssynbio.4c00729.


A synthetic methylotroph achieves accelerated cell growth by alleviating transcription-replication conflicts.

Meng X, Hu G, Li X, Gao C, Song W, Wei W Nat Commun. 2025; 16(1):31.

PMID: 39747058 PMC: 11695965. DOI: 10.1038/s41467-024-55502-5.


Evolutionary engineering of methylotrophic E. coli enables fast growth on methanol.

Nieh L, Chen F, Jung H, Su K, Tsuei C, Lin C Nat Commun. 2024; 15(1):8840.

PMID: 39397031 PMC: 11471845. DOI: 10.1038/s41467-024-53206-4.


Design, construction and optimization of formaldehyde growth biosensors with broad application in biotechnology.

Schann K, Bakker J, Boinot M, Kuschel P, He H, Nattermann M Microb Biotechnol. 2024; 17(7):e14527.

PMID: 39031508 PMC: 11259041. DOI: 10.1111/1751-7915.14527.


References
1.
Gassler T, Sauer M, Gasser B, Egermeier M, Troyer C, Causon T . The industrial yeast Pichia pastoris is converted from a heterotroph into an autotroph capable of growth on CO. Nat Biotechnol. 2019; 38(2):210-216. PMC: 7008030. DOI: 10.1038/s41587-019-0363-0. View

2.
Chistoserdova L, Lapidus A, Han C, Goodwin L, Saunders L, Brettin T . Genome of Methylobacillus flagellatus, molecular basis for obligate methylotrophy, and polyphyletic origin of methylotrophy. J Bacteriol. 2007; 189(11):4020-7. PMC: 1913398. DOI: 10.1128/JB.00045-07. View

3.
Agarwal N, Freakley S, McVicker R, Althahban S, Dimitratos N, He Q . Aqueous Au-Pd colloids catalyze selective CH oxidation to CHOH with O under mild conditions. Science. 2017; 358(6360):223-227. DOI: 10.1126/science.aan6515. View

4.
Keller P, Noor E, Meyer F, Reiter M, Anastassov S, Kiefer P . Methanol-dependent Escherichia coli strains with a complete ribulose monophosphate cycle. Nat Commun. 2020; 11(1):5403. PMC: 7588473. DOI: 10.1038/s41467-020-19235-5. View

5.
Woolston B, King J, Reiter M, Van Hove B, Stephanopoulos G . Improving formaldehyde consumption drives methanol assimilation in engineered E. coli. Nat Commun. 2018; 9(1):2387. PMC: 6008399. DOI: 10.1038/s41467-018-04795-4. View