» Articles » PMID: 36059895

Taxonomy, Phylogeny and Identification of with Emphasis on Thermophilic Species

Overview
Journal Stud Mycol
Date 2022 Sep 5
PMID 36059895
Authors
Affiliations
Soon will be listed here.
Abstract

comprises phenotypically diverse species, which impact biotechnology, the indoor environment and human health. Recent studies showed that most of the traditionally defined genera in are highly polyphyletic. Many of these morphology-based genera, such as , and , have been redefined using multigene phylogenetic analysis combined with morphology; however, a comprehensive taxonomic overview of the family is lacking. In addition, the phylogenetic relationship of thermophilic species with non-thermophilic taxa in the family is largely unclear due to limited taxon sampling in previous studies. In this study, we provide an up-to-date overview on the taxonomy and phylogeny of genera and species belonging to , including an extensive taxon sampling of thermophiles. A multigene phylogenetic analysis based on the ITS (internal transcribed spacers 1 and 2 including the 5.8S nrDNA), LSU (D1/D2 domains of the 28S nrDNA), (partial RNA polymerase II second largest subunit gene) and (β-tubulin gene) sequences was performed on 345 strains representing and 58 strains of other families in . Divergence times based on the multi-gene phylogeny were estimated as aid to determine the genera in the family. Genera were delimited following the criteria that a genus must be a statistically well-supported monophyletic clade in both the multigene phylogeny and molecular dating analysis, fall within a divergence time of over 27 million years ago, and be supported by ecological preference or phenotypic traits. Based on the results of the phylogeny and molecular dating analyses, combined with morphological characters and temperature-growth characteristics, 50 genera and 275 species are accepted in . Among them, six new genera, six new species, 45 new combinations and three new names are proposed. The results demonstrate that the thermophilic species fall into seven genera (, , , ., ., and ). These genera cluster in six separate lineages, suggesting that thermophiles independently evolved at least six times within the family. A list of accepted genera and species in , together with information on their MycoBank numbers, living ex-type strains and GenBank accession numbers to ITS, LSU, and sequences is provided. Furthermore, we provide suggestions how to describe and identify species. X.Wei Wang & Houbraken X.Wei Wang, P.J. Han, F.Y. Bai & Houbraken, X.Wei Wang & Houbraken, X.Wei Wang & Houbraken, X.Wei Wang & Houbraken, X.Wei Wang & Houbraken; X.Wei Wang, P.J. Han & F.Y. Bai, Sergejeva ex X.Wei Wang & Houbraken, X.Wei Wang, P.J. Han & F.Y. Bai, X.Wei Wang, P.J. Han & F.Y. Bai, X.Wei Wang & Houbraken, X.Wei Wang, P.J. Han & F.Y. Bai; (Udagawa) Houbraken, X.Wei Wang, P.J. Han & F.Y. Bai (Cañete-Gibas ) Cañete-Gibas, Wiederhold, X.Wei Wang & Houbraken, (Arx) X.Wei Wang & Houbraken, (G. Malhotra & Mukerji) X.Wei Wang & Houbraken, (Stchigel ) X.Wei Wang & Houbraken, (Sörgel ex Seth) X.Wei Wang & Houbraken, (Udagawa & Y. Sugiy.) X.Wei Wang & Houbraken, (Malloch & Benny) X.Wei Wang & Houbraken, (L.M. Ames) X.Wei Wang & Houbraken, (M. Raza & L. Cai) X.Wei Wang & Houbraken, (Udagawa & Y. Horie) X.Wei Wang & Houbraken, (Guarro & Figueras) X.Wei Wang & Houbraken, (K.T. Chen) X.Wei Wang & Houbraken, (Udagawa & S. Ueda) X.Wei Wang & Houbraken, (A. Carter & R.S. Khan) X.Wei Wang & Houbraken, (Seth) X.Wei Wang & Houbraken, (A. Carter) X.Wei Wang & Houbraken, (L.M. Ames) X.Wei Wang & Houbraken, (A. Carter & Malloch) X.Wei Wang & Houbraken, (L.M. Ames) X.Wei Wang & Houbraken, (Udagawa & T. Muroi) X.Wei Wang & Houbraken, (Yu Zhang & L. Cai) X.Wei Wang & Houbraken, (Cano & Guarro) X.Wei Wang & Houbraken, (Guarro & Arx) X.Wei Wang & Houbraken, (Pidopl. ) X.Wei Wang & Houbraken, (Yu Zhang & L. Cai) X.Wei Wang & Houbraken, (Besada & Yusef) X.Wei Wang & Houbraken, (Arx) X.Wei Wang & Houbraken (A. Carter .) X.Wei Wang & Houbraken, (Sergejeva) X.Wei Wang & Houbraken, (Sergejeva) X.Wei Wang & Houbraken, (Nicot) X.Wei Wang & Houbraken, (X.Wei Wang & Samson) X.Wei Wang & Houbraken, (Abdullah & Al-Bader) X.Wei Wang & Houbraken, (X.Wei Wang .) X.Wei Wang, P.J. Han, F.Y. Bai & Houbraken, (X.Wei Wang ) X.Wei Wang, P.J. Han, F.Y. Bai & Houbraken, (Udagawa & Cain) X.Wei Wang, P.J. Han, F.Y. Bai & Houbraken, (Chivers) X.Wei Wang, P.J. Han, F.Y. Bai & Houbraken, (Hyang B. Lee & T.T.T. Nguyen) X.Wei Wang & Houbraken, (Z.F. Zhang & L. Cai) X.Wei Wang & Houbraken, (Yu Zhang & L. Cai) X.Wei Wang & Houbraken, (Tansey & M.A. Jack) X.Wei Wang & Houbraken, (Cooney & R. Emers.) X.Wei Wang & Houbraken, (La Touche) X.Wei Wang & Houbraken (Chivers) X.Wei Wang & Houbraken; X.Wei Wang & Houbraken, X.Wei Wang & Houbraken, X.Wei Wang & Houbraken; : Papendorf & H.P. Upadhyay, Sacc. & Marchal, Sörgel, Klopotek. Wang XW, Han PJ, Bai FY, Luo A, Bensch K, Meijer M, Kraak B, Han DY, Sun BD, Crous PW, Houbraken J (2022). Taxonomy, phylogeny and identification of with emphasis on thermophilic species. : 121-243. doi: 10.3114/sim.2022.101.03.

Citing Articles

Bulbillosins A - E, azaphilones from sp. nov. (), a root endophyte of the Chinese medicinal plant .

Barrera-Adame D, Marin-Felix Y, Wegener A, Lalk M, Stadler M, Niedermeyer T IMA Fungus. 2025; 16:e141036.

PMID: 40052077 PMC: 11882021. DOI: 10.3897/imafungus.16.141036.


New Species of Ascomycetes from Two Hypersaline Endorheic Lagoon Complexes in Zaragoza Province (Aragon Community, Spain).

Barnes-Guirado M, Cano-Lira J, Miller A, Stchigel A J Fungi (Basel). 2025; 11(2).

PMID: 39997433 PMC: 11856669. DOI: 10.3390/jof11020139.


Descriptions of 19 Unrecorded Species Belonging to in Korea.

Nguyen T, Lee H Mycobiology. 2025; 52(6):405-438.

PMID: 39845177 PMC: 11749255. DOI: 10.1080/12298093.2024.2426840.


Three New Species and Five New Host Records from with Anti-Phytopathogenic Potential from Cover Crops and .

Qian N, Wu Y, Zhang W, Yang J, Bhadauria V, Zhang G J Fungi (Basel). 2024; 10(11).

PMID: 39590695 PMC: 11595803. DOI: 10.3390/jof10110776.


Agricultural practices influence soil microbiome assembly and interactions at different depths identified by machine learning.

Mo Y, Bier R, Li X, Daniels M, Smith A, Yu L Commun Biol. 2024; 7(1):1349.

PMID: 39424928 PMC: 11489707. DOI: 10.1038/s42003-024-07059-8.


References
1.
Crous P, Wingfield M, Burgess T, Hardy G, Gene J, Guarro J . Fungal Planet description sheets: 716-784. Persoonia. 2018; 40:240-393. PMC: 6146637. DOI: 10.3767/persoonia.2018.40.10. View

2.
Zhang Q, Li H, Zong S, Gao J, Zhang A . Chemical and bioactive diversities of the genus Chaetomium secondary metabolites. Mini Rev Med Chem. 2012; 12(2):127-48. DOI: 10.2174/138955712798995066. View

3.
Miller A, Huhndorf S . Multi-gene phylogenies indicate ascomal wall morphology is a better predictor of phylogenetic relationships than ascospore morphology in the Sordariales (Ascomycota, Fungi). Mol Phylogenet Evol. 2005; 35(1):60-75. DOI: 10.1016/j.ympev.2005.01.007. View

4.
van den Brink J, Facun K, de Vries M, Stielow J . Thermophilic growth and enzymatic thermostability are polyphyletic traits within Chaetomiaceae. Fungal Biol. 2015; 119(12):1255-1266. DOI: 10.1016/j.funbio.2015.09.011. View

5.
Varga T, Krizsan K, Foldi C, Dima B, Sanchez-Garcia M, Sanchez-Ramirez S . Megaphylogeny resolves global patterns of mushroom evolution. Nat Ecol Evol. 2019; 3(4):668-678. PMC: 6443077. DOI: 10.1038/s41559-019-0834-1. View