Ordiway G, McDonnell M, Sanchez J
Neurosci Insights. 2024; 19:26331055241228308.
PMID: 38304551
PMC: 10832403.
DOI: 10.1177/26331055241228308.
Wang Y, Abrams K, Youngman M, Henry K
J Assoc Res Otolaryngol. 2023; 24(5):473-485.
PMID: 37798548
PMC: 10695905.
DOI: 10.1007/s10162-023-00910-5.
McGee J, Nelson P, Ponder J, Marr J, Redig P, Walsh E
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2019; 205(6):793-811.
PMID: 31520117
DOI: 10.1007/s00359-019-01367-9.
Krumm B, Klump G, Koppl C, Langemann U
Proc Biol Sci. 2017; 284(1863).
PMID: 28931742
PMC: 5627212.
DOI: 10.1098/rspb.2017.1584.
Xia A, Liu X, Raphael P, Applegate B, Oghalai J
Nat Commun. 2016; 7:13133.
PMID: 27796310
PMC: 5095595.
DOI: 10.1038/ncomms13133.
Electrical tuning and transduction in short hair cells of the chicken auditory papilla.
Tan X, Beurg M, Hackney C, Mahendrasingam S, Fettiplace R
J Neurophysiol. 2013; 109(8):2007-20.
PMID: 23365177
PMC: 3628031.
DOI: 10.1152/jn.01028.2012.
Tonotopic organization of the superior olivary nucleus in the chicken auditory brainstem.
Tabor K, Coleman W, Rubel E, Burger R
J Comp Neurol. 2011; 520(7):1493-508.
PMID: 22102107
PMC: 4033909.
DOI: 10.1002/cne.22807.
Developmental acquisition of a rapid calcium-regulated vesicle supply allows sustained high rates of exocytosis in auditory hair cells.
Levic S, Bouleau Y, Dulon D
PLoS One. 2011; 6(10):e25714.
PMID: 21998683
PMC: 3188563.
DOI: 10.1371/journal.pone.0025714.
Cell proliferation follows acoustically-induced hair cell bundle loss in the zebrafish saccule.
Schuck J, Smith M
Hear Res. 2009; 253(1-2):67-76.
PMID: 19327392
PMC: 2810637.
DOI: 10.1016/j.heares.2009.03.008.
Otoacoustic emissions in humans, birds, lizards, and frogs: evidence for multiple generation mechanisms.
Bergevin C, Freeman D, Saunders J, Shera C
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2008; 194(7):665-83.
PMID: 18500528
PMC: 2562659.
DOI: 10.1007/s00359-008-0338-y.
Tonotopic distribution of short-term adaptation properties in the cochlear nerve of normal and acoustically overexposed chicks.
Crumling M, Saunders J
J Assoc Res Otolaryngol. 2007; 8(1):54-68.
PMID: 17200911
PMC: 2538420.
DOI: 10.1007/s10162-006-0061-8.
Variation in large-conductance, calcium-activated potassium channels from hair cells along the chicken basilar papilla.
Duncan R, Fuchs P
J Physiol. 2003; 547(Pt 2):357-71.
PMID: 12562934
PMC: 2342658.
DOI: 10.1113/jphysiol.2002.029785.
beta subunits modulate alternatively spliced, large conductance, calcium-activated potassium channels of avian hair cells.
Ramanathan K, Michael T, Fuchs P
J Neurosci. 2000; 20(5):1675-84.
PMID: 10684869
PMC: 6772940.
High-frequency auditory feedback is not required for adult song maintenance in Bengalese finches.
Woolley S, Rubel E
J Neurosci. 1998; 19(1):358-71.
PMID: 9870965
PMC: 6782364.
A developmental model for generating frequency maps in the reptilian and avian cochleas.
Wu Y, Fettiplace R
Biophys J. 1996; 70(6):2557-70.
PMID: 8744295
PMC: 1225237.
DOI: 10.1016/S0006-3495(96)79827-2.
Discharge patterns of chicken cochlear ganglion neurons following kanamycin-induced hair cell loss and regeneration.
Salvi R, Saunders S, Hashino E, Chen L
J Comp Physiol A. 1994; 174(3):351-69.
PMID: 8151523
DOI: 10.1007/BF00240217.
Hereditary sensorineural hearing loss in a bird.
Gleich O, Klump G, Dooling R
Naturwissenschaften. 1994; 81(7):320-3.
PMID: 8084360
DOI: 10.1007/BF01131950.
Ontogenesis of tonotopy in inferior colliculus of a hipposiderid bat reveals postnatal shift in frequency-place code.
Rubsamen R, Neuweiler G, Marimuthu G
J Comp Physiol A. 1989; 165(6):755-69.
PMID: 2810149
DOI: 10.1007/BF00610874.
Discharge patterns of cochlear ganglion neurons in the chicken.
Salvi R, Saunders S, Powers N, Boettcher F
J Comp Physiol A. 1992; 170(2):227-41.
PMID: 1583607
DOI: 10.1007/BF00196905.
Postnatal development of central auditory frequency maps.
Rubsamen R
J Comp Physiol A. 1992; 170(2):129-43.
PMID: 1583602
DOI: 10.1007/BF00196895.