6.
Javed Ansari M, Rajendran R, Mohanto S, Agarwal U, Panda K, Dhotre K
. Poly(-isopropylacrylamide)-Based Hydrogels for Biomedical Applications: A Review of the State-of-the-Art. Gels. 2022; 8(7).
PMC: 9323937.
DOI: 10.3390/gels8070454.
View
7.
Gibbs D, Black C, Dawson J, Oreffo R
. A review of hydrogel use in fracture healing and bone regeneration. J Tissue Eng Regen Med. 2014; 10(3):187-98.
DOI: 10.1002/term.1968.
View
8.
Bratskaya S, Skatova A, Privar Y, Boroda A, Kantemirova E, Maiorova M
. Stimuli-Responsive Dual Cross-Linked -Carboxyethylchitosan Hydrogels with Tunable Dissolution Rate. Gels. 2021; 7(4).
PMC: 8628705.
DOI: 10.3390/gels7040188.
View
9.
Yang Y, Zhou M, Peng J, Wang X, Liu Y, Wang W
. Robust, anti-freezing and conductive bonding of chitosan-based double-network hydrogels for stable-performance flexible electronic. Carbohydr Polym. 2021; 276:118753.
DOI: 10.1016/j.carbpol.2021.118753.
View
10.
Pang J, Wang L, Xu Y, Wu M, Wang M, Liu Y
. Skin-inspired cellulose conductive hydrogels with integrated self-healing, strain, and thermal sensitive performance. Carbohydr Polym. 2020; 240:116360.
DOI: 10.1016/j.carbpol.2020.116360.
View
11.
Han M, Chen L, Aras K, Liang C, Chen X, Zhao H
. Catheter-integrated soft multilayer electronic arrays for multiplexed sensing and actuation during cardiac surgery. Nat Biomed Eng. 2020; 4(10):997-1009.
PMC: 8021456.
DOI: 10.1038/s41551-020-00604-w.
View
12.
Tong R, Chen G, Pan D, Qi H, Li R, Tian J
. Highly Stretchable and Compressible Cellulose Ionic Hydrogels for Flexible Strain Sensors. Biomacromolecules. 2019; 20(5):2096-2104.
DOI: 10.1021/acs.biomac.9b00322.
View
13.
Sorber J, Steiner G, Schulz V, Guenther M, Gerlach G, Salzer R
. Hydrogel-based piezoresistive pH sensors: investigations using FT-IR attenuated total reflection spectroscopic imaging. Anal Chem. 2008; 80(8):2957-62.
DOI: 10.1021/ac702598n.
View
14.
Zhou Z, Li Y, Wong W, Guo T, Tang S, Luo J
. Transition of surface-interface creasing in bilayer hydrogels. Soft Matter. 2017; 13(35):6011-6020.
DOI: 10.1039/c7sm01013c.
View
15.
Zhang J, Wang Y, Wei Q, Wang Y, Lei M, Li M
. Self-Healing Mechanism and Conductivity of the Hydrogel Flexible Sensors: A Review. Gels. 2021; 7(4).
PMC: 8628684.
DOI: 10.3390/gels7040216.
View
16.
Krishnan V, Yuen Hui C, Long R
. Finite strain crack tip fields in soft incompressible elastic solids. Langmuir. 2008; 24(24):14245-53.
DOI: 10.1021/la802795e.
View
17.
Wischerhoff E, Zacher T, Laschewsky A, Rekai E
. Direct Observation of the Lower Critical Solution Temperature of Surface-Attached Thermo-Responsive Hydrogels by Surface Plasmon Resonance The work was supported by the European Commission (research grants CEE BIO-CT97-962372 and ERBFMBCT 982915). . Angew Chem Int Ed Engl. 2001; 39(24):4602-4604.
View
18.
Yu D, Du D, Yang H, Tu Y
. Parallel computing simulation of electrical excitation and conduction in the 3D human heart. Annu Int Conf IEEE Eng Med Biol Soc. 2015; 2014:4315-9.
DOI: 10.1109/EMBC.2014.6944579.
View
19.
Yang Y, Wang X, Yang F, Wang L, Wu D
. Highly Elastic and Ultratough Hybrid Ionic-Covalent Hydrogels with Tunable Structures and Mechanics. Adv Mater. 2018; 30(18):e1707071.
DOI: 10.1002/adma.201707071.
View
20.
Zou P, Yao J, Cui Y, Zhao T, Che J, Yang M
. Advances in Cellulose-Based Hydrogels for Biomedical Engineering: A Review Summary. Gels. 2022; 8(6).
PMC: 9222388.
DOI: 10.3390/gels8060364.
View