» Articles » PMID: 36002571

R-loop Formation and Conformational Activation Mechanisms of Cas9

Overview
Journal Nature
Specialty Science
Date 2022 Aug 24
PMID 36002571
Authors
Affiliations
Soon will be listed here.
Abstract

Cas9 is a CRISPR-associated endonuclease capable of RNA-guided, site-specific DNA cleavage. The programmable activity of Cas9 has been widely utilized for genome editing applications, yet its precise mechanisms of target DNA binding and off-target discrimination remain incompletely understood. Here we report a series of cryo-electron microscopy structures of Streptococcus pyogenes Cas9 capturing the directional process of target DNA hybridization. In the early phase of R-loop formation, the Cas9 REC2 and REC3 domains form a positively charged cleft that accommodates the distal end of the target DNA duplex. Guide-target hybridization past the seed region induces rearrangements of the REC2 and REC3 domains and relocation of the HNH nuclease domain to assume a catalytically incompetent checkpoint conformation. Completion of the guide-target heteroduplex triggers conformational activation of the HNH nuclease domain, enabled by distortion of the guide-target heteroduplex, and complementary REC2 and REC3 domain rearrangements. Together, these results establish a structural framework for target DNA-dependent activation of Cas9 that sheds light on its conformational checkpoint mechanism and may facilitate the development of novel Cas9 variants and guide RNA designs with enhanced specificity and activity.

Citing Articles

Insights into the compact CRISPR-Cas9d system.

Yang J, Wang T, Huang Y, Long Z, Li X, Zhang S Nat Commun. 2025; 16(1):2462.

PMID: 40075056 PMC: 11903963. DOI: 10.1038/s41467-025-57455-9.


Improving adenine base editing precision by enlarging the recognition domain of CRISPR-Cas9.

Gao S, Weng B, Wich D, Power L, Chen M, Guan H Nat Commun. 2025; 16(1):2081.

PMID: 40021632 PMC: 11871365. DOI: 10.1038/s41467-025-57154-5.


Supersecondary Structure Code for RNA: Trace of Conformational Change on the Ribosome and the R-Loop Formation of Cas9.

Izumi H, Nafie L, Dukor R ACS Omega. 2025; 10(5):4998-5005.

PMID: 39959072 PMC: 11822710. DOI: 10.1021/acsomega.4c10681.


Solid-State Nanopore Real-Time Assay for Monitoring Cas9 Endonuclease Reactivity.

Chau C, Weckman N, Thomson E, Actis P ACS Nano. 2025; 19(3):3839-3851.

PMID: 39814565 PMC: 11781028. DOI: 10.1021/acsnano.4c15173.


Structural insights into how Cas9 targets nucleosomes.

Nagamura R, Kujirai T, Kato J, Shuto Y, Kusakizako T, Hirano H Nat Commun. 2024; 15(1):10744.

PMID: 39737984 PMC: 11685650. DOI: 10.1038/s41467-024-54768-z.


References
1.
Garneau J, Dupuis M, Villion M, Romero D, Barrangou R, Boyaval P . The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature. 2010; 468(7320):67-71. DOI: 10.1038/nature09523. View

2.
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna J, Charpentier E . A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012; 337(6096):816-21. PMC: 6286148. DOI: 10.1126/science.1225829. View

3.
Sapranauskas R, Gasiunas G, Fremaux C, Barrangou R, Horvath P, Siksnys V . The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucleic Acids Res. 2011; 39(21):9275-82. PMC: 3241640. DOI: 10.1093/nar/gkr606. View

4.
Cong L, Ran F, Cox D, Lin S, Barretto R, Habib N . Multiplex genome engineering using CRISPR/Cas systems. Science. 2013; 339(6121):819-23. PMC: 3795411. DOI: 10.1126/science.1231143. View

5.
Jinek M, East A, Cheng A, Lin S, Ma E, Doudna J . RNA-programmed genome editing in human cells. Elife. 2013; 2:e00471. PMC: 3557905. DOI: 10.7554/eLife.00471. View