» Articles » PMID: 36002483

Kardar-Parisi-Zhang Universality in a One-dimensional Polariton Condensate

Abstract

Revealing universal behaviours is a hallmark of statistical physics. Phenomena such as the stochastic growth of crystalline surfaces and of interfaces in bacterial colonies, and spin transport in quantum magnets all belong to the same universality class, despite the great plurality of physical mechanisms they involve at the microscopic level. More specifically, in all these systems, space-time correlations show power-law scalings characterized by universal critical exponents. This universality stems from a common underlying effective dynamics governed by the nonlinear stochastic Kardar-Parisi-Zhang (KPZ) equation. Recent theoretical works have suggested that this dynamics also emerges in the phase of out-of-equilibrium systems showing macroscopic spontaneous coherence. Here we experimentally demonstrate that the evolution of the phase in a driven-dissipative one-dimensional polariton condensate falls in the KPZ universality class. Our demonstration relies on a direct measurement of KPZ space-time scaling laws, combined with a theoretical analysis that reveals other key signatures of this universality class. Our results highlight fundamental physical differences between out-of-equilibrium condensates and their equilibrium counterparts, and open a paradigm for exploring universal behaviours in driven open quantum systems.

Citing Articles

Observation of quantum criticality of a four-dimensional phase transition.

Madani F, Denis M, Szriftgiser P, Garreau J, Rancon A, Chicireanu R Nat Commun. 2025; 16(1):2519.

PMID: 40082400 PMC: 11906895. DOI: 10.1038/s41467-025-57396-3.


Room-temperature continuous-wave pumped exciton polariton condensation in a perovskite microcavity.

Song J, Ghosh S, Deng X, Li C, Shang Q, Liu X Sci Adv. 2025; 11(5):eadr1652.

PMID: 39879295 PMC: 11777180. DOI: 10.1126/sciadv.adr1652.


Negative-mass exciton polaritons induced by dissipative light-matter coupling in an atomically thin semiconductor.

Wurdack M, Yun T, Katzer M, Truscott A, Knorr A, Selig M Nat Commun. 2023; 14(1):1026.

PMID: 36823076 PMC: 9950362. DOI: 10.1038/s41467-023-36618-6.

References
1.
Ljubotina M, Znidaric M, Prosen T . Spin diffusion from an inhomogeneous quench in an integrable system. Nat Commun. 2017; 8:16117. PMC: 5554798. DOI: 10.1038/ncomms16117. View

2.
Ljubotina M, Znidaric M, Prosen T . Kardar-Parisi-Zhang Physics in the Quantum Heisenberg Magnet. Phys Rev Lett. 2019; 122(21):210602. DOI: 10.1103/PhysRevLett.122.210602. View

3.
Wei D, Rubio-Abadal A, Ye B, Machado F, Kemp J, Srakaew K . Quantum gas microscopy of Kardar-Parisi-Zhang superdiffusion. Science. 2022; 376(6594):716-720. DOI: 10.1126/science.abk2397. View

4.
Kardar , Parisi , Zhang . Dynamic scaling of growing interfaces. Phys Rev Lett. 1986; 56(9):889-892. DOI: 10.1103/PhysRevLett.56.889. View

5.
Comaron P, Dagvadorj G, Zamora A, Carusotto I, Proukakis N, Szymanska M . Dynamical Critical Exponents in Driven-Dissipative Quantum Systems. Phys Rev Lett. 2018; 121(9):095302. DOI: 10.1103/PhysRevLett.121.095302. View