Will Microfluidics Enable Functionally Integrated Biohybrid Robots?
Overview
Affiliations
The next robotics frontier will be led by biohybrids. Capable biohybrid robots require microfluidics to sustain, improve, and scale the architectural complexity of their core ingredient: biological tissues. Advances in microfluidics have already revolutionized disease modeling and drug development, and are positioned to impact regenerative medicine but have yet to apply to biohybrids. Fusing microfluidics with living materials will improve tissue perfusion and maturation, and enable precise patterning of sensing, processing, and control elements. This perspective suggests future developments in advanced biohybrids.
Bio-inspired electronics: Soft, biohybrid, and "living" neural interfaces.
Boufidis D, Garg R, Angelopoulos E, Cullen D, Vitale F Nat Commun. 2025; 16(1):1861.
PMID: 39984447 PMC: 11845577. DOI: 10.1038/s41467-025-57016-0.
Li T, Takeuchi S Biophys Rev (Melville). 2025; 6(1):011304.
PMID: 39957912 PMC: 11825180. DOI: 10.1063/5.0246194.
Microfluidic platforms for monitoring cardiomyocyte electromechanical activity.
Wang W, Su W, Han J, Song W, Li X, Xu C Microsyst Nanoeng. 2025; 11(1):4.
PMID: 39788940 PMC: 11718118. DOI: 10.1038/s41378-024-00751-z.
Advances in modeling permeability and selectivity of the blood-brain barrier using microfluidics.
Sun J, Song S Microfluid Nanofluidics. 2025; 28(7.
PMID: 39781566 PMC: 11709447. DOI: 10.1007/s10404-024-02741-z.
Untethered soft magnetic pump for microfluidics-based Marangoni surfer.
Lin Y, Pinan Basualdo F, Kalpathy Venkiteswaran V, Misra S Sci Rep. 2024; 14(1):20280.
PMID: 39217167 PMC: 11365977. DOI: 10.1038/s41598-024-70944-z.