6.
Yang J, Yang F, Yang Y, Xing G, Deng C, Shen Y
. A proposal of "core enzyme" bioindicator in long-term Pb-Zn ore pollution areas based on topsoil property analysis. Environ Pollut. 2016; 213:760-769.
DOI: 10.1016/j.envpol.2016.03.030.
View
7.
Qi X, Xiao S, Chen X, Ali I, Gou J, Wang D
. Biochar-based microbial agent reduces U and Cd accumulation in vegetables and improves rhizosphere microecology. J Hazard Mater. 2022; 436:129147.
DOI: 10.1016/j.jhazmat.2022.129147.
View
8.
Fan J, Cai C, Chi H, Reid B, Coulon F, Zhang Y
. Remediation of cadmium and lead polluted soil using thiol-modified biochar. J Hazard Mater. 2020; 388:122037.
DOI: 10.1016/j.jhazmat.2020.122037.
View
9.
Ali A, Shaheen S, Guo D, Li Y, Xiao R, Wahid F
. Apricot shell- and apple tree-derived biochar affect the fractionation and bioavailability of Zn and Cd as well as the microbial activity in smelter contaminated soil. Environ Pollut. 2020; 264:114773.
DOI: 10.1016/j.envpol.2020.114773.
View
10.
Gholami L, Rahimi G, Khademi Jolgeh Nezhad A
. Effect of thiourea-modified biochar on adsorption and fractionation of cadmium and lead in contaminated acidic soil. Int J Phytoremediation. 2019; 22(5):468-481.
DOI: 10.1080/15226514.2019.1678108.
View
11.
Chen D, Wang X, Wang X, Feng K, Su J, Dong J
. The mechanism of cadmium sorption by sulphur-modified wheat straw biochar and its application cadmium-contaminated soil. Sci Total Environ. 2020; 714:136550.
DOI: 10.1016/j.scitotenv.2020.136550.
View
12.
Li R, Tan W, Wang G, Zhao X, Dang Q, Yu H
. Nitrogen addition promotes the transformation of heavy metal speciation from bioavailable to organic bound by increasing the turnover time of organic matter: An analysis on soil aggregate level. Environ Pollut. 2019; 255(Pt 1):113170.
DOI: 10.1016/j.envpol.2019.113170.
View
13.
Zhu Y, Zhong M, Li W, Qiu Y, Wang H, Lv X
. Cotton straw biochar and Bacillus compound biofertilizer decreased Cd migration in alkaline soil: Insights from relationship between soil key metabolites and key bacteria. Ecotoxicol Environ Saf. 2022; 232:113293.
DOI: 10.1016/j.ecoenv.2022.113293.
View
14.
Ahmad M, Rajapaksha A, Lim J, Zhang M, Bolan N, Mohan D
. Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere. 2013; 99:19-33.
DOI: 10.1016/j.chemosphere.2013.10.071.
View
15.
Elzobair K, Stromberger M, Ippolito J, Lentz R
. Contrasting effects of biochar versus manure on soil microbial communities and enzyme activities in an Aridisol. Chemosphere. 2015; 142:145-52.
DOI: 10.1016/j.chemosphere.2015.06.044.
View
16.
Lu J, Lu H, Li J, Liu J, Feng S, Guan Y
. Multi-criteria decision analysis of optimal planting for enhancing phytoremediation of trace heavy metals in mining sites under interval residual contaminant concentrations. Environ Pollut. 2019; 255(Pt 2):113255.
DOI: 10.1016/j.envpol.2019.113255.
View
17.
Yang X, Liu J, McGrouther K, Huang H, Lu K, Guo X
. Effect of biochar on the extractability of heavy metals (Cd, Cu, Pb, and Zn) and enzyme activity in soil. Environ Sci Pollut Res Int. 2015; 23(2):974-84.
DOI: 10.1007/s11356-015-4233-0.
View
18.
Tang J, Zhang L, Zhang J, Ren L, Zhou Y, Zheng Y
. Physicochemical features, metal availability and enzyme activity in heavy metal-polluted soil remediated by biochar and compost. Sci Total Environ. 2019; 701:134751.
DOI: 10.1016/j.scitotenv.2019.134751.
View
19.
Luo Z, Ma J, Chen F, Li X, Zhang Q, Yang Y
. Adaptive Development of Soil Bacterial Communities to Ecological Processes Caused by Mining Activities in the Loess Plateau, China. Microorganisms. 2020; 8(4).
PMC: 7232194.
DOI: 10.3390/microorganisms8040477.
View
20.
Li X, Zhang Q, Ma J, Yang Y, Wang Y, Fu C
. Flooding Irrigation Weakens the Molecular Ecological Network Complexity of Soil Microbes During the Process of Dryland-to-Paddy Conversion. Int J Environ Res Public Health. 2020; 17(2).
PMC: 7014367.
DOI: 10.3390/ijerph17020561.
View