» Articles » PMID: 35982044

Phase-locked Constructing Dynamic Supramolecular Ionic Conductive Elastomers with Superior Toughness, Autonomous Self-healing and Recyclability

Overview
Journal Nat Commun
Specialty Biology
Date 2022 Aug 18
PMID 35982044
Authors
Affiliations
Soon will be listed here.
Abstract

Stretchable ionic conductors are considerable to be the most attractive candidate for next-generation flexible ionotronic devices. Nevertheless, high ionic conductivity, excellent mechanical properties, good self-healing capacity and recyclability are necessary but can be rarely satisfied in one material. Herein, we propose an ionic conductor design, dynamic supramolecular ionic conductive elastomers (DSICE), via phase-locked strategy, wherein locking soft phase polyether backbone conducts lithium-ion (Li) transport and the combination of dynamic disulfide metathesis and stronger supramolecular quadruple hydrogen bonds in the hard domains contributes to the self-healing capacity and mechanical versatility. The dual-phase design performs its own functions and the conflict among ionic conductivity, self-healing capability, and mechanical compatibility can be thus defeated. The well-designed DSICE exhibits high ionic conductivity (3.77 × 10 S m at 30 °C), high transparency (92.3%), superior stretchability (2615.17% elongation), strength (27.83 MPa) and toughness (164.36 MJ m), excellent self-healing capability (~99% at room temperature) and favorable recyclability. This work provides an interesting strategy for designing the advanced ionic conductors and offers promise for flexible ionotronic devices or solid-state batteries.

Citing Articles

Influence of the Molecular Weight of the Polycarbonate Polyol on the Intrinsic Self-Healing at 20 °C of Polyurethanes.

Paez-Amieva Y, Martin-Martinez J Polymers (Basel). 2024; 16(19).

PMID: 39408435 PMC: 11478995. DOI: 10.3390/polym16192724.


Self-healing photoluminescent polymers with photosensitive behavior for information storage and multiple-level dynamic encryption.

Zhao D, Li X, Li Q, Yue C, Wang Y, Li H Chem Sci. 2024; 15(33):13306-13312.

PMID: 39183904 PMC: 11339966. DOI: 10.1039/d4sc02733g.


Super-Durable, Tough Shape-Memory Polymeric Materials Woven from Interlocking Rigid-Flexible Chains.

Xu J, Shao M, Chen T, Li S, Zhang Y, Yang Z Adv Sci (Weinh). 2024; 11(38):e2406193.

PMID: 39099450 PMC: 11481217. DOI: 10.1002/advs.202406193.


Semi-crystalline polymers with supramolecular synergistic interactions: from mechanical toughening to dynamic smart materials.

Shi C, Qin W, Qu D Chem Sci. 2024; 15(22):8295-8310.

PMID: 38846397 PMC: 11151828. DOI: 10.1039/d4sc02089h.


Stretchable phosphorescent polymers by multiphase engineering.

Gan N, Zou X, Qian Z, Lv A, Wang L, Ma H Nat Commun. 2024; 15(1):4113.

PMID: 38750029 PMC: 11096371. DOI: 10.1038/s41467-024-47673-y.


References
1.
Schulze M, McIntosh L, Hillmyer M, Lodge T . High-modulus, high-conductivity nanostructured polymer electrolyte membranes via polymerization-induced phase separation. Nano Lett. 2013; 14(1):122-6. DOI: 10.1021/nl4034818. View

2.
Kim S, Jeon H, Shin S, Park S, Jegal J, Hwang S . Superior Toughness and Fast Self-Healing at Room Temperature Engineered by Transparent Elastomers. Adv Mater. 2017; 30(1). DOI: 10.1002/adma.201705145. View

3.
Shi L, Zhu T, Gao G, Zhang X, Wei W, Liu W . Highly stretchable and transparent ionic conducting elastomers. Nat Commun. 2018; 9(1):2630. PMC: 6035269. DOI: 10.1038/s41467-018-05165-w. View

4.
Li T, Zhang X, Lacey S, Mi R, Zhao X, Jiang F . Cellulose ionic conductors with high differential thermal voltage for low-grade heat harvesting. Nat Mater. 2019; 18(6):608-613. DOI: 10.1038/s41563-019-0315-6. View

5.
Li M, Chen L, Li Y, Dai X, Jin Z, Zhang Y . Superstretchable, yet stiff, fatigue-resistant ligament-like elastomers. Nat Commun. 2022; 13(1):2279. PMC: 9046184. DOI: 10.1038/s41467-022-30021-3. View