» Articles » PMID: 35976596

Automated Quantification of Cartilage Quality for Hip Treatment Decision Support

Abstract

Purpose: Preservation surgery can halt the progress of joint degradation, preserving the life of the hip; however, outcome depends on the existing cartilage quality. Biochemical analysis of the hip cartilage utilizing MRI sequences such as delayed gadolinium-enhanced MRI of cartilage (dGEMRIC), in addition to morphological analysis, can be used to detect early signs of cartilage degradation. However, a complete, accurate 3D analysis of the cartilage regions and layers is currently not possible due to a lack of diagnostic tools.

Methods: A system for the efficient automatic parametrization of the 3D hip cartilage was developed. 2D U-nets were trained on manually annotated dual-flip angle (DFA) dGEMRIC for femoral head localization and cartilage segmentation. A fully automated cartilage sectioning pipeline for analysis of central and peripheral regions, femoral-acetabular layers, and a variable number of section slices, was developed along with functionality for the automatic calculation of dGEMRIC index, thickness, surface area, and volume.

Results: The trained networks locate the femoral head and segment the cartilage with a Dice similarity coefficient of 88 ± 3 and 83 ± 4% on DFA and magnetization-prepared 2 rapid gradient-echo (MP2RAGE) dGEMRIC, respectively. A completely automatic cartilage analysis was performed in 18s, and no significant difference for average dGEMRIC index, volume, surface area, and thickness calculated on manual and automatic segmentation was observed.

Conclusion: An application for the 3D analysis of hip cartilage was developed for the automated detection of subtle morphological and biochemical signs of cartilage degradation in prognostic studies and clinical diagnosis. The segmentation network achieved a 4-time increase in processing speed without loss of segmentation accuracy on both normal and deformed anatomy, enabling accurate parametrization. Retraining of the networks with the promising MP2RAGE protocol would enable analysis without the need for B1 inhomogeneity correction in the future.

Citing Articles

A deep learning approach for automatic 3D segmentation of hip cartilage and labrum from direct hip MR arthrography.

Meier M, Helfenstein R, Boschung A, Nanavati A, Ruckli A, Lerch T Sci Rep. 2025; 15(1):4662.

PMID: 39920175 PMC: 11805980. DOI: 10.1038/s41598-025-86727-z.


Modern Image-Guided Surgery: A Narrative Review of Medical Image Processing and Visualization.

Lin Z, Lei C, Yang L Sensors (Basel). 2023; 23(24).

PMID: 38139718 PMC: 10748263. DOI: 10.3390/s23249872.


[Preoperative MR imaging for hip dysplasia : Assessment of associated deformities and intraarticular pathologies].

Lerch T, Schmaranzer F Orthopadie (Heidelb). 2023; 52(4):300-312.

PMID: 36976331 PMC: 10063507. DOI: 10.1007/s00132-023-04356-8.

References
1.
Pollard T, McNally E, WILSON D, Wilson D, Madler B, Watson M . Localized cartilage assessment with three-dimensional dGEMRIC in asymptomatic hips with normal morphology and cam deformity. J Bone Joint Surg Am. 2010; 92(15):2557-69. DOI: 10.2106/JBJS.I.01200. View

2.
Nishii T, Sugano N, Sato Y, Tanaka H, Miki H, Yoshikawa H . Three-dimensional distribution of acetabular cartilage thickness in patients with hip dysplasia: a fully automated computational analysis of MR imaging. Osteoarthritis Cartilage. 2004; 12(8):650-7. DOI: 10.1016/j.joca.2004.04.009. View

3.
Lattanzi R, Petchprapa C, Ascani D, Babb J, Chu D, Davidovitch R . Detection of cartilage damage in femoroacetabular impingement with standardized dGEMRIC at 3 T. Osteoarthritis Cartilage. 2014; 22(3):447-56. DOI: 10.1016/j.joca.2013.12.022. View

4.
Zilkens C, Tiderius C, Krauspe R, Bittersohl B . Current knowledge and importance of dGEMRIC techniques in diagnosis of hip joint diseases. Skeletal Radiol. 2015; 44(8):1073-83. DOI: 10.1007/s00256-015-2135-3. View

5.
Chandra S, Surowiec R, Ho C, Xia Y, Engstrom C, Crozier S . Automated analysis of hip joint cartilage combining MR T2 and three-dimensional fast-spin-echo images. Magn Reson Med. 2015; 75(1):403-13. DOI: 10.1002/mrm.25598. View