6.
Reddy M, Mauger A, Julien C, Paolella A, Zaghib K
. Brief History of Early Lithium-Battery Development. Materials (Basel). 2020; 13(8).
PMC: 7215417.
DOI: 10.3390/ma13081884.
View
7.
Ghosh P, Yusop M, Ghosh D, Hayashi A, Hayashi Y, Tanemura M
. Direct fabrication of aligned metal composite carbon nanofibers on copper substrate at room temperature and their field emission property. Chem Commun (Camb). 2011; 47(16):4820-2.
DOI: 10.1039/c1cc10655d.
View
8.
Xu J, Wang X, Cheng J
. Supercapacitive Performances of Ternary CuCoS Sulfides. ACS Omega. 2020; 5(3):1305-1311.
PMC: 6990422.
DOI: 10.1021/acsomega.9b03865.
View
9.
Du J, Lai X, Yang N, Zhai J, Kisailus D, Su F
. Hierarchically ordered macro-mesoporous TiO₂-graphene composite films: improved mass transfer, reduced charge recombination, and their enhanced photocatalytic activities. ACS Nano. 2010; 5(1):590-6.
DOI: 10.1021/nn102767d.
View
10.
Chrzanowski W, Abou Neel E, Armitage D, Knowles J
. Effect of surface treatment on the bioactivity of nickel-titanium. Acta Biomater. 2008; 4(6):1969-84.
DOI: 10.1016/j.actbio.2008.05.010.
View
11.
Dai J, Lv Y, Zhang J, Zhang D, Xie H, Guo C
. Effect of morphology and phase engineering of MoS on electrochemical properties of carbon nanotube/polyaniline@MoS composites. J Colloid Interface Sci. 2021; 590:591-600.
DOI: 10.1016/j.jcis.2021.01.051.
View
12.
Textor M, de Jonge N
. Strategies for Preparing Graphene Liquid Cells for Transmission Electron Microscopy. Nano Lett. 2018; 18(6):3313-3321.
DOI: 10.1021/acs.nanolett.8b01366.
View
13.
Wu Z, Ren W, Wang D, Li F, Liu B, Cheng H
. High-energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors. ACS Nano. 2010; 4(10):5835-42.
DOI: 10.1021/nn101754k.
View
14.
Li X, Chen M, Wang L, Xu H, Zhong J, Zhang M
. Nitrogen-doped carbon nanotubes as an anode for a highly robust potassium-ion hybrid capacitor. Nanoscale Horiz. 2020; 5(12):1586-1595.
DOI: 10.1039/d0nh00451k.
View
15.
Kim I, Lee J, Kim T, Kim H, Kim H, Choi W
. A strong electronic coupling between graphene nanosheets and layered titanate nanoplates: a soft-chemical route to highly porous nanocomposites with improved photocatalytic activity. Small. 2012; 8(7):1038-48.
DOI: 10.1002/smll.201101703.
View
16.
Dhibar S, Malik S
. Morphological Modulation of Conducting Polymer Nanocomposites with Nickel Cobaltite/Reduced Graphene Oxide and Their Subtle Effects on the Capacitive Behaviors. ACS Appl Mater Interfaces. 2020; 12(48):54053-54067.
DOI: 10.1021/acsami.0c14478.
View
17.
Weatherup R, Bayer B, Blume R, Ducati C, Baehtz C, Schlogl R
. In situ characterization of alloy catalysts for low-temperature graphene growth. Nano Lett. 2011; 11(10):4154-60.
DOI: 10.1021/nl202036y.
View
18.
Sharma S, Osugi T, Elnobi S, Ozeki S, Paudel Jaisi B, Kalita G
. Synthesis and Characterization of Li-C Nanocomposite for Easy and Safe Handling. Nanomaterials (Basel). 2020; 10(8).
PMC: 7466401.
DOI: 10.3390/nano10081483.
View
19.
Williams G, Seger B, Kamat P
. TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. ACS Nano. 2009; 2(7):1487-91.
DOI: 10.1021/nn800251f.
View
20.
Yang Y, Peng Y, Lin C, Long L, Hu J, He J
. Human ACE2-Functionalized Gold "Virus-Trap" Nanostructures for Accurate Capture of SARS-CoV-2 and Single-Virus SERS Detection. Nanomicro Lett. 2021; 13:109.
PMC: 8042470.
DOI: 10.1007/s40820-021-00620-8.
View