» Articles » PMID: 35958041

THE PROHOROV METRIC FRAMEWORK AND AGGREGATE DATA INVERSE PROBLEMS FOR RANDOM PDEs

Overview
Date 2022 Aug 12
PMID 35958041
Authors
Affiliations
Soon will be listed here.
Abstract

We consider nonparametric estimation of probability measures for parameters in problems where only aggregate (population level) data are available. We summarize an existing computational method for the estimation problem which has been developed over the past several decades [24, 5, 12, 28, 16]. Theoretical results are presented which establish the existence and consistency of very general (ordinary, generalized and other) least squares estimates and estimators for the measure estimation problem with specific application to random PDEs.

Citing Articles

Using ultrasonic attenuation in cortical bone to infer distributions on pore size.

White R, Alexanderian A, Yousefian O, Karbalaeisadegh Y, Bekele-Maxwell K, Kasali A Appl Math Model. 2024; 109:819-832.

PMID: 39070898 PMC: 11281329. DOI: 10.1016/j.apm.2022.05.024.


A population model-based linear-quadratic Gaussian compensator for the control of intravenously infused alcohol studies and withdrawal symptom prophylaxis using transdermal sensing.

Yao M, Luczak S, Saldich E, Rosen I Optim Control Appl Methods. 2024; 45(2):594-622.

PMID: 38765179 PMC: 11096777. DOI: 10.1002/oca.2934.


Computation of nonparametric, mixed effects, maximum likelihood, biosensor data based-estimators for the distributions of random parameters in an abstract parabolic model for the transdermal transport of alcohol.

Asserian L, Luczak S, Rosen I Math Biosci Eng. 2023; 20(11):20345-20377.

PMID: 38052648 PMC: 11610795. DOI: 10.3934/mbe.2023900.


Blood and Breath Alcohol Concentration from Transdermal Alcohol Biosensor Data: Estimation and Uncertainty Quantification via Forward and Inverse Filtering for a Covariate-Dependent, Physics-Informed, Hidden Markov Model.

Oszkinat C, Shao T, Wang C, Rosen I, Rosen A, Saldich E Inverse Probl. 2023; 38(5).

PMID: 37727531 PMC: 10508879. DOI: 10.1088/1361-6420/ac5ac7.


Deconvolving the input to random abstract parabolic systems: a population model-based approach to estimating blood/breath alcohol concentration from transdermal alcohol biosensor data.

Sirlanci M, Rosen I, Luczak S, Fairbairn C, Bresin K, Kang D Inverse Probl. 2020; 34(12).

PMID: 31892764 PMC: 6938217. DOI: 10.1088/1361-6420/aae791.


References
1.
Luczak S, Gary Rosen I, Wall T . Development of a real-time repeated-measures assessment protocol to capture change over the course of a drinking episode. Alcohol Alcohol. 2015; 50(2):180-7. PMC: 4327345. DOI: 10.1093/alcalc/agu100. View

2.
Swift R, Martin C, Swette L, LaConti A, Kackley N . Studies on a wearable, electronic, transdermal alcohol sensor. Alcohol Clin Exp Res. 1992; 16(4):721-5. DOI: 10.1111/j.1530-0277.1992.tb00668.x. View

3.
Rosen I, Luczak S, Weiss J . Blind Deconvolution for Distributed Parameter Systems with Unbounded Input and Output and Determining Blood Alcohol Concentration from Transdermal Biosensor Data. Appl Math Comput. 2014; 231:357-376. PMC: 3972634. DOI: 10.1016/j.amc.2013.12.099. View

4.
Albanese R, Banks H, Evans M, Potter L . Physiologically based pharmacokinetic models for the transport of trichloroethylene in adipose tissue. Bull Math Biol. 2002; 64(1):97-131. DOI: 10.1006/bulm.2001.0268. View

5.
Baldock A, Ahn S, Rockne R, Johnston S, Neal M, Corwin D . Patient-specific metrics of invasiveness reveal significant prognostic benefit of resection in a predictable subset of gliomas. PLoS One. 2014; 9(10):e99057. PMC: 4211670. DOI: 10.1371/journal.pone.0099057. View