THE PROHOROV METRIC FRAMEWORK AND AGGREGATE DATA INVERSE PROBLEMS FOR RANDOM PDEs
Overview
Affiliations
We consider nonparametric estimation of probability measures for parameters in problems where only aggregate (population level) data are available. We summarize an existing computational method for the estimation problem which has been developed over the past several decades [24, 5, 12, 28, 16]. Theoretical results are presented which establish the existence and consistency of very general (ordinary, generalized and other) least squares estimates and estimators for the measure estimation problem with specific application to random PDEs.
Using ultrasonic attenuation in cortical bone to infer distributions on pore size.
White R, Alexanderian A, Yousefian O, Karbalaeisadegh Y, Bekele-Maxwell K, Kasali A Appl Math Model. 2024; 109:819-832.
PMID: 39070898 PMC: 11281329. DOI: 10.1016/j.apm.2022.05.024.
Yao M, Luczak S, Saldich E, Rosen I Optim Control Appl Methods. 2024; 45(2):594-622.
PMID: 38765179 PMC: 11096777. DOI: 10.1002/oca.2934.
Asserian L, Luczak S, Rosen I Math Biosci Eng. 2023; 20(11):20345-20377.
PMID: 38052648 PMC: 11610795. DOI: 10.3934/mbe.2023900.
Oszkinat C, Shao T, Wang C, Rosen I, Rosen A, Saldich E Inverse Probl. 2023; 38(5).
PMID: 37727531 PMC: 10508879. DOI: 10.1088/1361-6420/ac5ac7.
Sirlanci M, Rosen I, Luczak S, Fairbairn C, Bresin K, Kang D Inverse Probl. 2020; 34(12).
PMID: 31892764 PMC: 6938217. DOI: 10.1088/1361-6420/aae791.