» Articles » PMID: 35956138

Long-Term Neuroradiological and Clinical Evaluation of NBIA Patients Treated with a Deferiprone Based Iron-Chelation Therapy

Abstract

Neurodegeneration with brain iron accumulation (NBIA) comprises various rare clinical entities with brain iron overload as a common feature. Magnetic resonance imaging (MRI) allows diagnosis of this condition, and genetic molecular testing can confirm the diagnosis to better understand the intracellular damage mechanism involved. NBIA groups disorders include: pantothenate kinase-associated neurodegeneration (PKAN), mutations in the gene encoding pantothenate kinase 2 (PANK2); neuroferritinopathy, mutations in the calcium-independent phospholipase A2 gene (PLA2G6); aceruloplasminemia; and other subtypes with no specific clinical or MRI specific patterns identified. There is no causal therapy, and only symptom treatments are available for this condition. Promising strategies include the use of deferiprone (DFP), an orally administered bidentate iron chelator with the ability to pass through the blood-brain barrier. This is a prospective study analysis with a mean follow-up time of 5.5 ± 2.3 years (min-max: 2.4-9.6 years) to define DFP (15 mg/kg bid)'s efficacy and safety in the continuous treatment of 10 NBIA patients through clinical and neuroradiological evaluation. Our results show the progressive decrease in the cerebral accumulation of iron evaluated by MRI and a substantial stability of the overall clinical neurological picture without a significant correlation between clinical and radiological findings. Complete ferrochelation throughout the day appears to be of fundamental importance considering that oxidative damage is generated, above, all by non-transferrin-bound iron (NTBI); thus, we hypothesize that a (TID) administration regimen of DFP might better apply its chelating properties over 24 h with the aim to also obtain clinical improvement beyond the neuroradiological improvement.

Citing Articles

Pathology and treatment methods in pantothenate kinase-associated neurodegeneration.

Kwinta R, Kopcik K, Koberling A Postep Psychiatr Neurol. 2024; 33(3):163-171.

PMID: 39678459 PMC: 11635428. DOI: 10.5114/ppn.2024.141713.


The Importance and Essentiality of Natural and Synthetic Chelators in Medicine: Increased Prospects for the Effective Treatment of Iron Overload and Iron Deficiency.

Kontoghiorghes G Int J Mol Sci. 2024; 25(9).

PMID: 38731873 PMC: 11083551. DOI: 10.3390/ijms25094654.


Aceruloplasminemia: Unique Clinical and MRI Findings in a Patient with a Novel Frameshift Mutation.

Colucci F, Barca S, Cilia R, De Franco V, Elia A, Andreasi N Mov Disord Clin Pract. 2024; 11 Suppl 2:S14-S16.

PMID: 38400595 PMC: 11322588. DOI: 10.1002/mdc3.14000.


Iron homeostasis imbalance and ferroptosis in brain diseases.

Long H, Zhu W, Wei L, Zhao J MedComm (2020). 2023; 4(4):e298.

PMID: 37377861 PMC: 10292684. DOI: 10.1002/mco2.298.


Inherited Disorders of Coenzyme A Biosynthesis: Models, Mechanisms, and Treatments.

Cavestro C, Diodato D, Tiranti V, Di Meo I Int J Mol Sci. 2023; 24(6).

PMID: 36983025 PMC: 10054636. DOI: 10.3390/ijms24065951.


References
1.
McNeill A, Birchall D, Hayflick S, Gregory A, Schenk J, Zimmerman E . T2* and FSE MRI distinguishes four subtypes of neurodegeneration with brain iron accumulation. Neurology. 2008; 70(18):1614-9. PMC: 2706154. DOI: 10.1212/01.wnl.0000310985.40011.d6. View

2.
Zorzi G, Zibordi F, Chiapparini L, Bertini E, Russo L, Piga A . Iron-related MRI images in patients with pantothenate kinase-associated neurodegeneration (PKAN) treated with deferiprone: results of a phase II pilot trial. Mov Disord. 2011; 26(9):1756-9. DOI: 10.1002/mds.23751. View

3.
Habgood M, Liu Z, Dehkordi L, Khodr H, Abbott J, Hider R . Investigation into the correlation between the structure of hydroxypyridinones and blood-brain barrier permeability. Biochem Pharmacol. 1999; 57(11):1305-10. DOI: 10.1016/s0006-2952(99)00031-3. View

4.
Gregory A, Polster B, Hayflick S . Clinical and genetic delineation of neurodegeneration with brain iron accumulation. J Med Genet. 2008; 46(2):73-80. PMC: 2675558. DOI: 10.1136/jmg.2008.061929. View

5.
Coates T . Iron overload in transfusion-dependent patients. Hematology Am Soc Hematol Educ Program. 2019; 2019(1):337-344. PMC: 6913424. DOI: 10.1182/hematology.2019000036. View