» Articles » PMID: 35947669

Fluidic Innervation Sensorizes Structures from a Single Build Material

Overview
Journal Sci Adv
Specialties Biology
Science
Date 2022 Aug 10
PMID 35947669
Authors
Affiliations
Soon will be listed here.
Abstract

Multifunctional materials with distributed sensing and programmed mechanical properties are required for myriad emerging technologies. However, current fabrication techniques constrain these materials' design and sensing capabilities. We address these needs with a method for sensorizing architected materials through fluidic innervation, where distributed networks of empty, air-filled channels are directly embedded within an architected material's sparse geometry. By measuring pressure changes within these channels, we receive feedback regarding material deformation. Thus, this technique allows for three-dimensional printing of sensorized structures from a single material. With this strategy, we fabricate sensorized soft robotic actuators on the basis of handed shearing auxetics and accurately predict their kinematics from the sensors' proprioceptive feedback using supervised learning. Our strategy for facilitating structural, sensing, and actuation capabilities through control of form alone simplifies sensorized material design for applications spanning wearables, smart structures, and robotics.

Citing Articles

Multi-Physical Lattice Metamaterials Enabled by Additive Manufacturing: Design Principles, Interaction Mechanisms, and Multifunctional Applications.

Ma W, Yang H, Zhao Y, Li X, Ding J, Qu S Adv Sci (Weinh). 2025; 12(8):e2405835.

PMID: 39834122 PMC: 11848643. DOI: 10.1002/advs.202405835.


A retrofit sensing strategy for soft fluidic robots.

Zou S, Picella S, de Vries J, Kortman V, Sakes A, Overvelde J Nat Commun. 2024; 15(1):539.

PMID: 38225274 PMC: 10789869. DOI: 10.1038/s41467-023-44517-z.


Vision-controlled jetting for composite systems and robots.

Buchner T, Rogler S, Weirich S, Armati Y, Cangan B, Ramos J Nature. 2023; 623(7987):522-530.

PMID: 37968527 PMC: 10651485. DOI: 10.1038/s41586-023-06684-3.


Recent Advances in Sensor-Actuator Hybrid Soft Systems: Core Advantages, Intelligent Applications, and Future Perspectives.

Han C, Jeong Y, Ahn J, Kim T, Choi J, Ha J Adv Sci (Weinh). 2023; 10(35):e2302775.

PMID: 37752815 PMC: 10724400. DOI: 10.1002/advs.202302775.


Sensing in Soft Robotics.

Hegde C, Su J, Tan J, He K, Chen X, Magdassi S ACS Nano. 2023; 17(16):15277-15307.

PMID: 37530475 PMC: 10448757. DOI: 10.1021/acsnano.3c04089.


References
1.
Yang G, Bellingham J, Dupont P, Fischer P, Floridi L, Full R . The grand challenges of . Sci Robot. 2020; 3(14). DOI: 10.1126/scirobotics.aar7650. View

2.
George Thuruthel T, Shih B, Laschi C, Tolley M . Soft robot perception using embedded soft sensors and recurrent neural networks. Sci Robot. 2020; 4(26). DOI: 10.1126/scirobotics.aav1488. View

3.
Larson C, Peele B, Li S, Robinson S, Totaro M, Beccai L . Highly stretchable electroluminescent skin for optical signaling and tactile sensing. Science. 2016; 351(6277):1071-4. DOI: 10.1126/science.aac5082. View

4.
Rein M, Favrod V, Hou C, Khudiyev T, Stolyarov A, Cox J . Diode fibres for fabric-based optical communications. Nature. 2018; 560(7717):214-218. DOI: 10.1038/s41586-018-0390-x. View

5.
Lipton J, MacCurdy R, Manchester Z, Chin L, Cellucci D, Rus D . Handedness in shearing auxetics creates rigid and compliant structures. Science. 2018; 360(6389):632-635. DOI: 10.1126/science.aar4586. View