» Articles » PMID: 35929025

Construction of a Cross-species Cell Landscape at Single-cell Level

Abstract

Individual cells are basic units of life. Despite extensive efforts to characterize the cellular heterogeneity of different organisms, cross-species comparisons of landscape dynamics have not been achieved. Here, we applied single-cell RNA sequencing (scRNA-seq) to map organism-level cell landscapes at multiple life stages for mice, zebrafish and Drosophila. By integrating the comprehensive dataset of > 2.6 million single cells, we constructed a cross-species cell landscape and identified signatures and common pathways that changed throughout the life span. We identified structural inflammation and mitochondrial dysfunction as the most common hallmarks of organism aging, and found that pharmacological activation of mitochondrial metabolism alleviated aging phenotypes in mice. The cross-species cell landscape with other published datasets were stored in an integrated online portal-Cell Landscape. Our work provides a valuable resource for studying lineage development, maturation and aging.

Citing Articles

Single-Cell Analysis Dissects the Effects of Vitamin D on Genetic Senescence Signatures Across Murine Tissues.

Sosa-Diaz E, Reyes-Gopar H, Anda-Jauregui G, Hernandez-Lemus E Nutrients. 2025; 17(3).

PMID: 39940287 PMC: 11820085. DOI: 10.3390/nu17030429.


A deep learning framework for screening of anticancer drugs at the single-cell level.

Zhang P, Wang X, Cen X, Zhang Q, Fu Y, Mei Y Natl Sci Rev. 2025; 12(2):nwae451.

PMID: 39872221 PMC: 11771446. DOI: 10.1093/nsr/nwae451.


Advances and applications in single-cell and spatial genomics.

Wang J, Ye F, Chai H, Jiang Y, Wang T, Ran X Sci China Life Sci. 2025; .

PMID: 39792333 DOI: 10.1007/s11427-024-2770-x.


Benchmarking cross-species single-cell RNA-seq data integration methods: towards a cell type tree of life.

Zhong H, Han W, Gomez-Cabrero D, Tegner J, Gao X, Cui G Nucleic Acids Res. 2025; 53(1.

PMID: 39778870 PMC: 11707536. DOI: 10.1093/nar/gkae1316.


Cross-species single-cell analysis reveals divergence and conservation of peripheral blood mononuclear cells.

Zhang S, Fang X, Chang M, Zheng M, Guo L, Xu Y BMC Genomics. 2024; 25(1):1169.

PMID: 39623297 PMC: 11613757. DOI: 10.1186/s12864-024-11030-6.


References
1.
Singh S, Chawla P, Hnatiuk A, Kamel M, Delgadillo Silva L, Spanjaard B . A single-cell atlas of de novo β-cell regeneration reveals the contribution of hybrid β/δ-cells to diabetes recovery in zebrafish. Development. 2022; 149(2). DOI: 10.1242/dev.199853. View

2.
Karaiskos N, Wahle P, Alles J, Boltengagen A, Ayoub S, Kipar C . The embryo at single-cell transcriptome resolution. Science. 2017; 358(6360):194-199. DOI: 10.1126/science.aan3235. View

3.
Han L, Wei X, Liu C, Volpe G, Zhuang Z, Zou X . Cell transcriptomic atlas of the non-human primate Macaca fascicularis. Nature. 2022; 604(7907):723-731. DOI: 10.1038/s41586-022-04587-3. View

4.
Martinez-Jimenez C, Eling N, Chen H, Vallejos C, Kolodziejczyk A, Connor F . Aging increases cell-to-cell transcriptional variability upon immune stimulation. Science. 2017; 355(6332):1433-1436. PMC: 5405862. DOI: 10.1126/science.aah4115. View

5.
Finak G, McDavid A, Yajima M, Deng J, Gersuk V, Shalek A . MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data. Genome Biol. 2015; 16:278. PMC: 4676162. DOI: 10.1186/s13059-015-0844-5. View