» Articles » PMID: 35926466

METTL14-dependent MA Modification Controls INKT Cell Development and Function

Overview
Journal Cell Rep
Publisher Cell Press
Date 2022 Aug 4
PMID 35926466
Authors
Affiliations
Soon will be listed here.
Abstract

N-methyladenosine (mA), the most common form of RNA modification, controls CD4 T cell homeostasis by targeting the IL-7/STAT5/SOCS signaling pathways. The role of mA modification in unconventional T cell development remains unknown. Using mice with T cell-specific deletion of RNA methyltransferase METTL14 (T-Mettl14), we demonstrate that mA modification is indispensable for iNKT cell homeostasis. Loss of METTL14-dependent mA modification leads to the upregulation of apoptosis in double-positive thymocytes, which in turn decreases Vα14-Jα18 gene rearrangements, resulting in drastic reduction of iNKT numbers in the thymus and periphery. Residual T-Mettl14 iNKT cells exhibit increased apoptosis, impaired maturation, and decreased responsiveness to IL-2/IL-15 and TCR stimulation. Furthermore, METTL14 knockdown in mature iNKT cells diminishes their cytokine production, correlating with increased Cish expression and decreased TCR signaling. Collectively, our study highlights a critical role for METTL14-dependent-mA modification in iNKT cell development and function.

Citing Articles

The Role of MA Modification in Autoimmunity: Emerging Mechanisms and Therapeutic Implications.

Xu L, Shen T, Li Y, Wu X Clin Rev Allergy Immunol. 2025; 68(1):29.

PMID: 40085180 DOI: 10.1007/s12016-025-09041-6.


N6-methyladenosine (m6A) modification in inflammation: a bibliometric analysis and literature review.

Li Z, Lao Y, Yan R, Guan X, Bai Y, Li F PeerJ. 2024; 12:e18645.

PMID: 39686999 PMC: 11648684. DOI: 10.7717/peerj.18645.


Linking ferroptosis to thymic involution.

Genah S, Velardi E Nat Aging. 2024; 4(12):1673-1675.

PMID: 39578559 DOI: 10.1038/s43587-024-00777-y.


METTL3 governs thymocyte development and thymic involution by regulating ferroptosis.

Jing H, Song J, Sun J, Su S, Hu J, Zhang H Nat Aging. 2024; 4(12):1813-1827.

PMID: 39443728 DOI: 10.1038/s43587-024-00724-x.


RNA modifications in cancer immune therapy: regulators of immune cells and immune checkpoints.

Qin X, Liu H, Zhang Q, Che Y, Lei T, Tang F Front Immunol. 2024; 15:1463847.

PMID: 39372415 PMC: 11449722. DOI: 10.3389/fimmu.2024.1463847.


References
1.
Heller J, Schjerven H, Li S, Lee A, Qiu J, Chen Z . Restriction of IL-22-producing T cell responses and differential regulation of regulatory T cell compartments by zinc finger transcription factor Ikaros. J Immunol. 2014; 193(8):3934-46. PMC: 4185244. DOI: 10.4049/jimmunol.1401234. View

2.
Zimmer M, Colmone A, Felio K, Xu H, Ma A, Wang C . A cell-type specific CD1d expression program modulates invariant NKT cell development and function. J Immunol. 2006; 176(3):1421-30. DOI: 10.4049/jimmunol.176.3.1421. View

3.
Prima V, Kaliberova L, Kaliberov S, Curiel D, Kusmartsev S . COX2/mPGES1/PGE2 pathway regulates PD-L1 expression in tumor-associated macrophages and myeloid-derived suppressor cells. Proc Natl Acad Sci U S A. 2017; 114(5):1117-1122. PMC: 5293015. DOI: 10.1073/pnas.1612920114. View

4.
Mycko M, Ferrero I, Wilson A, Jiang W, Bianchi T, Trumpp A . Selective requirement for c-Myc at an early stage of V(alpha)14i NKT cell development. J Immunol. 2009; 182(8):4641-8. DOI: 10.4049/jimmunol.0803394. View

5.
Anders S, Pyl P, Huber W . HTSeq--a Python framework to work with high-throughput sequencing data. Bioinformatics. 2014; 31(2):166-9. PMC: 4287950. DOI: 10.1093/bioinformatics/btu638. View