» Articles » PMID: 35922424

Reconfigurable Hyperbolic Polaritonics with Correlated Oxide Metasurfaces

Overview
Journal Nat Commun
Specialty Biology
Date 2022 Aug 3
PMID 35922424
Authors
Affiliations
Soon will be listed here.
Abstract

Polaritons enable subwavelength confinement and highly anisotropic flows of light over a wide spectral range, holding the promise for applications in modern nanophotonic and optoelectronic devices. However, to fully realize their practical application potential, facile methods enabling nanoscale active control of polaritons are needed. Here, we introduce a hybrid polaritonic-oxide heterostructure platform consisting of van der Waals crystals, such as hexagonal boron nitride (hBN) or alpha-phase molybdenum trioxide (α-MoO), transferred on nanoscale oxygen vacancy patterns on the surface of prototypical correlated perovskite oxide, samarium nickel oxide, SmNiO (SNO). Using a combination of scanning probe microscopy and infrared nanoimaging techniques, we demonstrate nanoscale reconfigurability of complex hyperbolic phonon polaritons patterned at the nanoscale with high resolution. Hydrogenation and temperature modulation allow spatially localized conductivity modulation of SNO nanoscale patterns, enabling robust real-time modulation and nanoscale reconfiguration of hyperbolic polaritons. Our work paves the way towards nanoscale programmable metasurface engineering for reconfigurable nanophotonic applications.

Citing Articles

Polaritonic states trapped by topological defects.

Smirnova D, Komissarenko F, Vakulenko A, Kiriushechkina S, Smolina E, Guddala S Nat Commun. 2024; 15(1):6355.

PMID: 39069540 PMC: 11284214. DOI: 10.1038/s41467-024-50666-6.


Direct programming of confined surface phonon polariton resonators with the plasmonic phase-change material InSbTe.

Conrads L, Schuler L, Wirth K, Wuttig M, Taubner T Nat Commun. 2024; 15(1):3472.

PMID: 38658601 PMC: 11043413. DOI: 10.1038/s41467-024-47841-0.


Infrared Nanoimaging of Hydrogenated Perovskite Nickelate Memristive Devices.

Gamage S, Manna S, Zajac M, Hancock S, Wang Q, Singh S ACS Nano. 2024; 18(3):2105-2116.

PMID: 38198599 PMC: 10811663. DOI: 10.1021/acsnano.3c09281.


Topologically reconfigurable magnetic polaritons.

Li M, Hu G, Chen X, Qiu C, Chen H, Wang Z Sci Adv. 2022; 8(50):eadd6660.

PMID: 36525502 PMC: 9757744. DOI: 10.1126/sciadv.add6660.

References
1.
Huth F, Govyadinov A, Amarie S, Nuansing W, Keilmann F, Hillenbrand R . Nano-FTIR absorption spectroscopy of molecular fingerprints at 20 nm spatial resolution. Nano Lett. 2012; 12(8):3973-8. DOI: 10.1021/nl301159v. View

2.
Catalano S, Gibert M, Fowlie J, Iniguez J, Triscone J, Kreisel J . Rare-earth nickelates RNiO: thin films and heterostructures. Rep Prog Phys. 2017; 81(4):046501. DOI: 10.1088/1361-6633/aaa37a. View

3.
Zhang Q, Hu G, Ma W, Li P, Krasnok A, Hillenbrand R . Interface nano-optics with van der Waals polaritons. Nature. 2021; 597(7875):187-195. DOI: 10.1038/s41586-021-03581-5. View

4.
Dai Z, Hu G, Si G, Ou Q, Zhang Q, Balendhran S . Edge-oriented and steerable hyperbolic polaritons in anisotropic van der Waals nanocavities. Nat Commun. 2020; 11(1):6086. PMC: 7705012. DOI: 10.1038/s41467-020-19913-4. View

5.
Taboada-Gutierrez J, Alvarez-Perez G, Duan J, Ma W, Crowley K, Prieto I . Broad spectral tuning of ultra-low-loss polaritons in a van der Waals crystal by intercalation. Nat Mater. 2020; 19(9):964-968. DOI: 10.1038/s41563-020-0665-0. View