» Articles » PMID: 35914526

Single-cell and Spatial Mapping Identify Cell Types and Signaling Networks in the Human Ureter

Abstract

Tissue engineering offers a promising treatment strategy for ureteral strictures, but its success requires an in-depth understanding of the architecture, cellular heterogeneity, and signaling pathways underlying tissue regeneration. Here, we define and spatially map cell populations within the human ureter using single-cell RNA sequencing, spatial gene expression, and immunofluorescence approaches. We focus on the stromal and urothelial cell populations to enumerate the distinct cell types composing the human ureter and infer potential cell-cell communication networks underpinning the bi-directional crosstalk between these compartments. Furthermore, we analyze and experimentally validate the importance of the sonic hedgehog (SHH) signaling pathway in adult progenitor cell maintenance. The SHH-expressing basal cells support organoid generation in vitro and accurately predict the differentiation trajectory from basal progenitor cells to terminally differentiated umbrella cells. Our results highlight the essential processes involved in adult ureter tissue homeostasis and provide a blueprint for guiding ureter tissue engineering.

Citing Articles

Exploring the utility of snRNA-seq in profiling human bladder tissue: A comprehensive comparison with scRNA-seq.

Santo B, Fink E, Krylova A, Lin Y, Eltemamy M, Wee A iScience. 2025; 28(1):111628.

PMID: 39850354 PMC: 11754086. DOI: 10.1016/j.isci.2024.111628.


Interplay of SHH, WNT and BMP4 signaling regulates the development of the lamina propria in the murine ureter.

Straube P, Beckers A, Jany U, Bergmann F, Ludtke T, Rudat C Development. 2025; 152(3).

PMID: 39817691 PMC: 11829765. DOI: 10.1242/dev.204214.


scEGG: an exogenous gene-guided clustering method for single-cell transcriptomic data.

Hu D, Guan R, Liang K, Yu H, Quan H, Zhao Y Brief Bioinform. 2024; 25(6).

PMID: 39344711 PMC: 11440090. DOI: 10.1093/bib/bbae483.


Loss of LPAR6 and CAB39L dysregulates the basal-to-luminal urothelial differentiation program, contributing to bladder carcinogenesis.

Lee S, Bondaruk J, Wang Y, Chen H, Lee J, Majewski T Cell Rep. 2024; 43(5):114146.

PMID: 38676926 PMC: 11265536. DOI: 10.1016/j.celrep.2024.114146.


Transcriptomic, epigenomic, and spatial metabolomic cell profiling redefines regional human kidney anatomy.

Li H, Li D, Ledru N, Xuanyuan Q, Wu H, Asthana A Cell Metab. 2024; 36(5):1105-1125.e10.

PMID: 38513647 PMC: 11081846. DOI: 10.1016/j.cmet.2024.02.015.


References
1.
Simaioforidis V, de Jonge P, Sloff M, Oosterwijk E, Geutjes P, Feitz W . Ureteral tissue engineering: where are we and how to proceed?. Tissue Eng Part B Rev. 2013; 19(5):413-9. DOI: 10.1089/ten.TEB.2012.0737. View

2.
Terpstra M, Remmerswaal E, van Aalderen M, Wever J, Sinnige M, van der Bom-Baylon N . Circulating mucosal-associated invariant T cells in subjects with recurrent urinary tract infections are functionally impaired. Immun Inflamm Dis. 2020; 8(1):80-92. PMC: 7016840. DOI: 10.1002/iid3.287. View

3.
Liang F, Bosland M, Huang H, Romih R, Baptiste S, Deng F . Cellular basis of urothelial squamous metaplasia: roles of lineage heterogeneity and cell replacement. J Cell Biol. 2005; 171(5):835-44. PMC: 2171294. DOI: 10.1083/jcb.200505035. View

4.
Bauckman K, Matsuda R, Higgins C, DeBosch B, Wang C, Mysorekar I . Dietary restriction of iron availability attenuates UPEC pathogenesis in a mouse model of urinary tract infection. Am J Physiol Renal Physiol. 2019; 316(5):F814-F822. PMC: 6580250. DOI: 10.1152/ajprenal.00133.2018. View

5.
Teh Y, Ding J, Ng L, Chong S . Capturing the Fantastic Voyage of Monocytes Through Time and Space. Front Immunol. 2019; 10:834. PMC: 6476989. DOI: 10.3389/fimmu.2019.00834. View