» Articles » PMID: 35906232

Cascaded Dissipative DNAzyme-driven Layered Networks Guide Transient Replication of Coded-strands As Gene Models

Overview
Journal Nat Commun
Specialty Biology
Date 2022 Jul 29
PMID 35906232
Authors
Affiliations
Soon will be listed here.
Abstract

Dynamic, transient, out-of-equilibrium networks guide cellular genetic, metabolic or signaling processes. Designing synthetic networks emulating natural processes imposes important challenges including the ordered connectivity of transient reaction modules, engineering of the appropriate balance between production and depletion of reaction constituents, and coupling of the reaction modules with emerging chemical functions dictated by the networks. Here we introduce the assembly of three coupled reaction modules executing a cascaded dynamic process leading to the transient formation and depletion of three different Mg-ion-dependent DNAzymes. The transient operation of the DNAzyme in one layer triggers the dynamic activation of the DNAzyme in the subsequent layer, leading to a three-layer transient catalytic cascade. The kinetics of the transient cascade is computationally simulated. The cascaded network is coupled to a polymerization/nicking DNA machinery guiding transient synthesis of three coded strands acting as "gene models", and to the rolling circle polymerization machinery leading to the transient synthesis of fluorescent Zn(II)-PPIX/G-quadruplex chains or hemin/G-quadruplex catalytic wires.

Citing Articles

Design of a Membrane-Anchored DNAzyme-Based Molecular Machine for Enhanced Cancer Therapy by Customized Cascade Regulation.

Wu M, Zhou Z, Wang X, Du X, Li D, Qian R ACS Pharmacol Transl Sci. 2024; 7(9):2869-2877.

PMID: 39296274 PMC: 11406680. DOI: 10.1021/acsptsci.4c00362.


An Exo III-powered closed-loop DNA circuit architecture for biosensing/imaging.

Zhao T, Xiao R, Li Y, Ren J, Niu L, Chang B Mikrochim Acta. 2024; 191(7):395.

PMID: 38877347 DOI: 10.1007/s00604-024-06476-0.


A signal transmission strategy driven by gap-regulated exonuclease hydrolysis for hierarchical molecular networks.

Liu X, Zhang X, Cui S, Xu S, Liu R, Wang B Commun Biol. 2024; 7(1):335.

PMID: 38493265 PMC: 10944543. DOI: 10.1038/s42003-024-06036-5.


DNA as a universal chemical substrate for computing and data storage.

Yang S, Bogels B, Wang F, Xu C, Dou H, Mann S Nat Rev Chem. 2024; 8(3):179-194.

PMID: 38337008 DOI: 10.1038/s41570-024-00576-4.


Dynamic DNA Networks-Guided Directional and Orthogonal Transient Biocatalytic Cascades.

Ouyang Y, Dong J, Willner I J Am Chem Soc. 2023; 145(40):22135-22149.

PMID: 37773962 PMC: 10571085. DOI: 10.1021/jacs.3c08020.


References
1.
Weitz M, Kim J, Kapsner K, Winfree E, Franco E, Simmel F . Diversity in the dynamical behaviour of a compartmentalized programmable biochemical oscillator. Nat Chem. 2014; 6(4):295-302. DOI: 10.1038/nchem.1869. View

2.
van Roekel H, Rosier B, Meijer L, Hilbers P, Markvoort A, Huck W . Programmable chemical reaction networks: emulating regulatory functions in living cells using a bottom-up approach. Chem Soc Rev. 2015; 44(21):7465-83. DOI: 10.1039/c5cs00361j. View

3.
Zhang Z, Sharon E, Freeman R, Liu X, Willner I . Fluorescence detection of DNA, adenosine-5'-triphosphate (ATP), and telomerase activity by zinc(II)-protoporphyrin IX/G-quadruplex labels. Anal Chem. 2012; 84(11):4789-97. DOI: 10.1021/ac300348v. View

4.
Zhou Z, Wang J, Willner I . Dictated Emergence of Nucleic Acid-Based Constitutional Dynamic Networks by DNA Replication Machineries. J Am Chem Soc. 2020; 143(1):241-251. DOI: 10.1021/jacs.0c09892. View

5.
Wang S, Yue L, Wulf V, Lilienthal S, Willner I . Dissipative Constitutional Dynamic Networks for Tunable Transient Responses and Catalytic Functions. J Am Chem Soc. 2020; 142(41):17480-17488. DOI: 10.1021/jacs.0c06977. View