» Articles » PMID: 35904245

Selenocyanate Derived Se-incorporation into the Nitrogenase Fe Protein Cluster

Overview
Journal Elife
Specialty Biology
Date 2022 Jul 29
PMID 35904245
Authors
Affiliations
Soon will be listed here.
Abstract

The nitrogenase Fe protein mediates ATP-dependent electron transfer to the nitrogenase MoFe protein during nitrogen fixation, in addition to catalyzing MoFe protein-independent substrate (CO) reduction and facilitating MoFe protein metallocluster biosynthesis. The precise role(s) of the Fe protein FeS cluster in some of these processes remains ill-defined. Herein, we report crystallographic data demonstrating ATP-dependent chalcogenide exchange at the FeS cluster of the nitrogenase Fe protein when potassium selenocyanate is used as the selenium source, an unexpected result as the Fe protein cluster is not traditionally perceived as a site of substrate binding within nitrogenase. The observed chalcogenide exchange illustrates that this FeS cluster is capable of core substitution reactions under certain conditions, adding to the Fe protein's repertoire of unique properties.

Citing Articles

Anaerobic cryoEM protocols for air-sensitive nitrogenase proteins.

Warmack R, Wenke B, Spatzal T, Rees D Nat Protoc. 2024; 19(7):2026-2051.

PMID: 38575747 PMC: 11528890. DOI: 10.1038/s41596-024-00973-5.


Organic Selenium induces ferroptosis in pancreatic cancer cells.

Noe R, Inglese N, Romani P, Serafini T, Paoli C, Calciolari B Redox Biol. 2023; 68:102962.

PMID: 38029455 PMC: 10698006. DOI: 10.1016/j.redox.2023.102962.


Application of a Synthetic Ferredoxin-Inspired [4Fe4S]-Peptide Maquette as the Redox Partner for an [FeFe]-Hydrogenase.

Bombana A, Shanmugam M, Collison D, Kibler A, Newton G, Jager C Chembiochem. 2023; 24(18):e202300250.

PMID: 37391388 PMC: 10946529. DOI: 10.1002/cbic.202300250.


Structural consequences of turnover-induced homocitrate loss in nitrogenase.

Warmack R, Maggiolo A, Orta A, Wenke B, Howard J, Rees D Nat Commun. 2023; 14(1):1091.

PMID: 36841829 PMC: 9968304. DOI: 10.1038/s41467-023-36636-4.


Facile and dynamic cleavage of every iron-sulfide bond in cuboidal iron-sulfur clusters.

Thompson N, Namkoong G, Skeel B, Suess D Proc Natl Acad Sci U S A. 2023; 120(6):e2210528120.

PMID: 36719911 PMC: 9963086. DOI: 10.1073/pnas.2210528120.


References
1.
Wenke B, Arias R, Spatzal T . Crystallization of Nitrogenase Proteins. Methods Mol Biol. 2018; 1876:155-165. DOI: 10.1007/978-1-4939-8864-8_10. View

2.
Spatzal T, Perez K, Einsle O, Howard J, Rees D . Ligand binding to the FeMo-cofactor: structures of CO-bound and reactivated nitrogenase. Science. 2014; 345(6204):1620-3. PMC: 4205161. DOI: 10.1126/science.1256679. View

3.
Einsle O, Rees D . Structural Enzymology of Nitrogenase Enzymes. Chem Rev. 2020; 120(12):4969-5004. PMC: 8606229. DOI: 10.1021/acs.chemrev.0c00067. View

4.
Murshudov G, Vagin A, Dodson E . Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr. 1997; 53(Pt 3):240-55. DOI: 10.1107/S0907444996012255. View

5.
Mustafa E, Mortenson L . Acetylene reduction by nitrogen fixing extracts of Clostridium pasteurianum: ATP requirement and inhibition by ADP. Nature. 1967; 216(5121):1241-2. DOI: 10.1038/2161241a0. View