6.
Guo X, Fang G, Li G, Ma H, Fan H, Yu L
. Direct, nonoxidative conversion of methane to ethylene, aromatics, and hydrogen. Science. 2014; 344(6184):616-9.
DOI: 10.1126/science.1253150.
View
7.
Perdew , Burke , Ernzerhof
. Generalized Gradient Approximation Made Simple. Phys Rev Lett. 1996; 77(18):3865-3868.
DOI: 10.1103/PhysRevLett.77.3865.
View
8.
Liu L, Corma A
. Metal Catalysts for Heterogeneous Catalysis: From Single Atoms to Nanoclusters and Nanoparticles. Chem Rev. 2018; 118(10):4981-5079.
PMC: 6061779.
DOI: 10.1021/acs.chemrev.7b00776.
View
9.
Yang Y, Qian Y, Li H, Zhang Z, Mu Y, Do D
. O-coordinated W-Mo dual-atom catalyst for pH-universal electrocatalytic hydrogen evolution. Sci Adv. 2020; 6(23):eaba6586.
PMC: 7274769.
DOI: 10.1126/sciadv.aba6586.
View
10.
Santos E, Quaino P, Schmickler W
. Theory of electrocatalysis: hydrogen evolution and more. Phys Chem Chem Phys. 2012; 14(32):11224-33.
DOI: 10.1039/c2cp40717e.
View
11.
Greeley J, Jaramillo T, Bonde J, Chorkendorff I, Norskov J
. Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat Mater. 2006; 5(11):909-13.
DOI: 10.1038/nmat1752.
View
12.
Yang L, Wang X, Wang J, Cui G, Liu D
. Graphite carbon nitride/boron-doped graphene hybrid for efficient hydrogen generation reaction. Nanotechnology. 2018; 29(34):345705.
DOI: 10.1088/1361-6528/aac9ae.
View
13.
Fang S, Zhu X, Liu X, Gu J, Liu W, Wang D
. Uncovering near-free platinum single-atom dynamics during electrochemical hydrogen evolution reaction. Nat Commun. 2020; 11(1):1029.
PMC: 7042219.
DOI: 10.1038/s41467-020-14848-2.
View
14.
Pan T, Wang Y, Xue X, Zhang C
. Rational design of allosteric switchable catalysts. Exploration (Beijing). 2023; 2(2):20210095.
PMC: 10191014.
DOI: 10.1002/EXP.20210095.
View
15.
Cheng N, Stambula S, Wang D, Banis M, Liu J, Riese A
. Platinum single-atom and cluster catalysis of the hydrogen evolution reaction. Nat Commun. 2016; 7:13638.
PMC: 5141386.
DOI: 10.1038/ncomms13638.
View
16.
Zhang N, Zhang X, Kang Y, Ye C, Jin R, Yan H
. A Supported Pd Dual-Atom Site Catalyst for Efficient Electrochemical CO Reduction. Angew Chem Int Ed Engl. 2021; 60(24):13388-13393.
DOI: 10.1002/anie.202101559.
View
17.
Seh Z, Kibsgaard J, Dickens C, Chorkendorff I, Norskov J, Jaramillo T
. Combining theory and experiment in electrocatalysis: Insights into materials design. Science. 2017; 355(6321).
DOI: 10.1126/science.aad4998.
View
18.
Jin C, Cheng L, Feng G, Ye R, Lu Z, Zhang R
. Adsorption of Transition-Metal Clusters on Graphene and N-Doped Graphene: A DFT Study. Langmuir. 2022; 38(12):3694-3710.
DOI: 10.1021/acs.langmuir.1c03187.
View
19.
Zang W, Sun T, Yang T, Xi S, Waqar M, Kou Z
. Efficient Hydrogen Evolution of Oxidized Ni-N Defective Sites for Alkaline Freshwater and Seawater Electrolysis. Adv Mater. 2020; 33(8):e2003846.
DOI: 10.1002/adma.202003846.
View
20.
Liu M, Zhang R, Chen W
. Graphene-supported nanoelectrocatalysts for fuel cells: synthesis, properties, and applications. Chem Rev. 2014; 114(10):5117-60.
DOI: 10.1021/cr400523y.
View