» Articles » PMID: 35891012

Torsional Low-Strain Test for Nondestructive Integrity Examination of Existing High-Pile Foundation

Overview
Journal Sensors (Basel)
Publisher MDPI
Specialty Biotechnology
Date 2022 Jul 27
PMID 35891012
Authors
Affiliations
Soon will be listed here.
Abstract

Low-strain tests are widely utilized as a nondestructive approach to assess the integrity of newly piled foundations. So far, the examination of existing pile foundations is becoming an indispensable protocol for pile recycling or post-disaster safety assessment. However, the present low-strain test is not capable of testing existing pile foundations. In this paper, the torsional low-strain test (TLST) is proposed to overcome this drawback. Both the upward and downward waves are considered in the TLST wave propagation model established in this paper so that a firm theoretical basis is grounded for the test signal interpretations. A concise semi-analytical solution is derived and its rationality is verified by comparisons with the existing solutions for newly piled foundations and the finite element results. The main conclusions of this study can be drawn as follows: (1). by placing the sensors where the incident wave is applied, the number of reflected signals can be minimized; (2). the defects can be more evidently identified if the incident wave/sensors are input/installed close to the superstructure/pile head.

Citing Articles

Dynamic response of a large-diameter end-bearing pile in permafrost.

Li Q, Zhang Y, Chen C, Wen M, Guan W, Duan W Sci Rep. 2024; 14(1):582.

PMID: 38182634 PMC: 10770332. DOI: 10.1038/s41598-023-46639-2.

References
1.
Cui D, Yan W, Wang X, Lu L . Towards Intelligent Interpretation of Low Strain Pile Integrity Testing Results Using Machine Learning Techniques. Sensors (Basel). 2017; 17(11). PMC: 5713026. DOI: 10.3390/s17112443. View

2.
Kou H, Diao W, Liu T, Yang D, Horpibulsuk S . Field Performance of Open-Ended Prestressed High-Strength Concrete Pipe Piles Jacked into Clay. Sensors (Basel). 2018; 18(12). PMC: 6308617. DOI: 10.3390/s18124216. View