6.
Park S, Kazlauskas R
. Biocatalysis in ionic liquids - advantages beyond green technology. Curr Opin Biotechnol. 2003; 14(4):432-7.
DOI: 10.1016/s0958-1669(03)00100-9.
View
7.
Fathirad F, Mostafavi A, Afzali D
. Electrospun Pd nanoparticles loaded on Vulcan carbon/ conductive polymeric ionic liquid nanofibers for selective and sensitive determination of tramadol. Anal Chim Acta. 2016; 940:65-72.
DOI: 10.1016/j.aca.2016.08.051.
View
8.
Reilly R
. Carbon nanotubes: potential benefits and risks of nanotechnology in nuclear medicine. J Nucl Med. 2007; 48(7):1039-42.
DOI: 10.2967/jnumed.107.041723.
View
9.
Banks C, Crossley A, Salter C, Wilkins S, Compton R
. Carbon nanotubes contain metal impurities which are responsible for the "electrocatalysis" seen at some nanotube-modified electrodes. Angew Chem Int Ed Engl. 2006; 45(16):2533-7.
DOI: 10.1002/anie.200600033.
View
10.
Gorke J, Srienc F, Kazlauskas R
. Toward advanced ionic liquids. Polar, enzyme-friendly solvents for biocatalysis. Biotechnol Bioprocess Eng. 2021; 15(1):40-53.
PMC: 8291719.
DOI: 10.1007/s12257-009-3079-z.
View
11.
Lariviere A, Lissalde S, Soubrand M, Casellas-Francais M
. Overview of Multiresidues Analytical Methods for the Quantitation of Pharmaceuticals in Environmental Solid Matrixes: Comparison of Analytical Development Strategy for Sewage Sludge, Manure, Soil, and Sediment Samples. Anal Chem. 2017; 89(1):453-465.
DOI: 10.1021/acs.analchem.6b04382.
View
12.
Chokkareddy R, Kanchi S, Inamuddin
. Simultaneous detection of ethambutol and pyrazinamide with IL@CoFeONPs@MWCNTs fabricated glassy carbon electrode. Sci Rep. 2020; 10(1):13563.
PMC: 7419556.
DOI: 10.1038/s41598-020-70263-z.
View
13.
Alizadeh M, Azar P, Mozaffari S, Karimi-Maleh H, Tamaddon A
. Evaluation of Pt,Pd-Doped, NiO-Decorated, Single-Wall Carbon Nanotube-Ionic Liquid Carbon Paste Chemically Modified Electrode: An Ultrasensitive Anticancer Drug Sensor for the Determination of Daunorubicin in the Presence of Tamoxifen. Front Chem. 2020; 8:677.
PMC: 7466574.
DOI: 10.3389/fchem.2020.00677.
View
14.
Khaleghi F, Irai A, Sadeghi R, Gupta V, Wen Y
. A Fast Strategy for Determination of Vitamin B₉ in Food and Pharmaceutical Samples Using an Ionic Liquid-Modified Nanostructure Voltammetric Sensor. Sensors (Basel). 2016; 16(6).
PMC: 4934179.
DOI: 10.3390/s16060747.
View
15.
Rama R, Meenakshi S, Pandian K, Gopinath S
. Room Temperature Ionic Liquids-Based Electrochemical Sensors: An Overview on Paracetamol Detection. Crit Rev Anal Chem. 2021; 52(6):1422-1431.
DOI: 10.1080/10408347.2021.1882834.
View
16.
Peng J, Hou C, Liu X, Li H, Hu X
. Electrochemical behavior of azithromycin at graphene and ionic liquid composite film modified electrode. Talanta. 2011; 86:227-32.
DOI: 10.1016/j.talanta.2011.09.005.
View
17.
Ibrahim H, Temerk Y
. Gold nanoparticles anchored graphitized carbon nanofibers ionic liquid electrode for ultrasensitive and selective electrochemical sensing of anticancer drug irinotecan. Mikrochim Acta. 2020; 187(10):579.
DOI: 10.1007/s00604-020-04560-9.
View
18.
Miller T, Bury N, Owen S, MacRae J, Barron L
. A review of the pharmaceutical exposome in aquatic fauna. Environ Pollut. 2018; 239:129-146.
PMC: 5981000.
DOI: 10.1016/j.envpol.2018.04.012.
View
19.
Chen Y, Tang Y, Liu Y, Zhao F, Zeng B
. Kill two birds with one stone: Selective and fast removal and sensitive determination of oxytetracycline using surface molecularly imprinted polymer based on ionic liquid and ATRP polymerization. J Hazard Mater. 2022; 434:128907.
DOI: 10.1016/j.jhazmat.2022.128907.
View
20.
Roushani M, Shahdost-Fard F
. Covalent attachment of aptamer onto nanocomposite as a high performance electrochemical sensing platform: Fabrication of an ultra-sensitive ibuprofen electrochemical aptasensor. Mater Sci Eng C Mater Biol Appl. 2016; 68:128-135.
DOI: 10.1016/j.msec.2016.05.099.
View