6.
Yu W, Huang G, Zhang Y, Liu H, Dong L, Yu X
. I2-mediated oxidative C-O bond formation for the synthesis of 1,3,4-oxadiazoles from aldehydes and hydrazides. J Org Chem. 2013; 78(20):10337-43.
DOI: 10.1021/jo401751h.
View
7.
Ma B, Blanco M, Calvillo L, Chen L, Chen G, Lau T
. Hybridization of Molecular and Graphene Materials for CO Photocatalytic Reduction with Selectivity Control. J Am Chem Soc. 2021; 143(22):8414-8425.
DOI: 10.1021/jacs.1c02250.
View
8.
Ningaiah S, Bhadraiah U, Doddaramappa S, Keshavamurthy S, Javarasetty C
. Novel pyrazole integrated 1,3,4-oxadiazoles: synthesis, characterization and antimicrobial evaluation. Bioorg Med Chem Lett. 2013; 24(1):245-8.
DOI: 10.1016/j.bmcl.2013.11.029.
View
9.
Bostrom J, Hogner A, Llinas A, Wellner E, Plowright A
. Oxadiazoles in medicinal chemistry. J Med Chem. 2011; 55(5):1817-30.
DOI: 10.1021/jm2013248.
View
10.
Sahin G, Palaska E, Ekizoglu M, Ozalp M
. Synthesis and antimicrobial activity of some 1,3,4-oxadiazole derivatives. Farmaco. 2002; 57(7):539-42.
DOI: 10.1016/s0014-827x(02)01245-4.
View
11.
Basak P, Dey S, Ghosh P
. Convenient one-pot synthesis of 1,2,4-oxadiazoles and 2,4,6-triarylpyridines using graphene oxide (GO) as a metal-free catalyst: importance of dual catalytic activity. RSC Adv. 2022; 11(51):32106-32118.
PMC: 9041786.
DOI: 10.1039/d1ra06331f.
View
12.
Climent M, Corma A, Iborra S
. Heterogeneous catalysts for the one-pot synthesis of chemicals and fine chemicals. Chem Rev. 2010; 111(2):1072-133.
DOI: 10.1021/cr1002084.
View
13.
Luna M, Barawi M, Gomez-Monivas S, Colchero J, Rodriguez-Pena M, Yang S
. Photoinduced Charge Transfer and Trapping on Single Gold Metal Nanoparticles on TiO. ACS Appl Mater Interfaces. 2021; 13(42):50531-50538.
PMC: 8554764.
DOI: 10.1021/acsami.1c13662.
View
14.
Yang S, Lv H, Zhong H, Yuan D, Wang X, Wang R
. Transformation of Covalent Organic Frameworks from N-Acylhydrazone to Oxadiazole Linkages for Smooth Electron Transfer in Photocatalysis. Angew Chem Int Ed Engl. 2021; 61(10):e202115655.
DOI: 10.1002/anie.202115655.
View
15.
Williams G, Seger B, Kamat P
. TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. ACS Nano. 2009; 2(7):1487-91.
DOI: 10.1021/nn800251f.
View
16.
Schneider J, Matsuoka M, Takeuchi M, Zhang J, Horiuchi Y, Anpo M
. Understanding TiO2 photocatalysis: mechanisms and materials. Chem Rev. 2014; 114(19):9919-86.
DOI: 10.1021/cr5001892.
View
17.
Kumar A, Choudhary P, Kumar A, Camargo P, Krishnan V
. Recent Advances in Plasmonic Photocatalysis Based on TiO and Noble Metal Nanoparticles for Energy Conversion, Environmental Remediation, and Organic Synthesis. Small. 2021; 18(1):e2101638.
DOI: 10.1002/smll.202101638.
View
18.
Boulanger N, Kuzenkova A, Iakunkov A, Romanchuk A, Trigub A, Egorov A
. Enhanced Sorption of Radionuclides by Defect-Rich Graphene Oxide. ACS Appl Mater Interfaces. 2020; 12(40):45122-45135.
PMC: 7684581.
DOI: 10.1021/acsami.0c11122.
View
19.
Cragg G, Grothaus P, Newman D
. Impact of natural products on developing new anti-cancer agents. Chem Rev. 2009; 109(7):3012-43.
DOI: 10.1021/cr900019j.
View
20.
Tuci G, Luconi L, Rossin A, Berretti E, Ba H, Innocenti M
. Aziridine-Functionalized Multiwalled Carbon Nanotubes: Robust and Versatile Catalysts for the Oxygen Reduction Reaction and Knoevenagel Condensation. ACS Appl Mater Interfaces. 2016; 8(44):30099-30106.
DOI: 10.1021/acsami.6b09033.
View