» Articles » PMID: 35873152

Virulence Factors of and Antivirulence Strategies to Combat Its Drug Resistance

Overview
Authors
Affiliations
Soon will be listed here.
Abstract

is an opportunistic pathogen causing nosocomial infections in severely ill and immunocompromised patients. Ubiquitously disseminated in the environment, especially in hospitals, it has become a major threat to human health due to the constant emergence of drug-resistant strains. Multiple resistance mechanisms are exploited by , which usually result in chronic infections difficult to eradicate. Diverse virulence factors responsible for bacterial adhesion and colonization, host immune suppression, and immune escape, play important roles in the pathogenic process of . As such, antivirulence treatment that aims at reducing virulence while sparing the bacterium for its eventual elimination by the immune system, or combination therapies, has significant advantages over traditional antibiotic therapy, as the former imposes minimal selective pressure on , thus less likely to induce drug resistance. In this review, we will discuss the virulence factors of , their pathogenic roles, and recent advances in antivirulence drug discovery for the treatment of infections.

Citing Articles

Exploring Proteases as Alternative Molecular Targets to Tackle Inflammation in Cystic Fibrosis Respiratory Infections.

Sandri A, Boschi F Int J Mol Sci. 2025; 26(5).

PMID: 40076497 PMC: 11899166. DOI: 10.3390/ijms26051871.


Green Nanotechnology: Naturally Sourced Nanoparticles as Antibiofilm and Antivirulence Agents Against Infectious Diseases.

Lawal H, Saeed S, Gaddafi M, Kamaruzzaman N Int J Microbiol. 2025; 2025:8746754.

PMID: 40041153 PMC: 11876540. DOI: 10.1155/ijm/8746754.


The virulence trait and genotype distribution amongst the Pseudomonas aeruginosa clinical strains.

Wang X, Gao K, Pan B, Wang B, Song Y, Guo W BMC Microbiol. 2025; 25(1):82.

PMID: 39979804 PMC: 11841163. DOI: 10.1186/s12866-025-03754-6.


Risk Factors and Outcomes of Multidrug-resistant in Kelantan, Malaysia: A Multicenter Case-control Study.

Salim S, Din N, Rashid R, Hitam S, Deris Z Saudi J Med Med Sci. 2025; 13(1):18-25.

PMID: 39935999 PMC: 11809758. DOI: 10.4103/sjmms.sjmms_429_24.


Snapshots of SOS response reveal structural requisites for LexA autoproteolysis.

Vascon F, De Felice S, Gasparotto M, Huber S, Catalano C, Chinellato M iScience. 2025; 28(2):111726.

PMID: 39898034 PMC: 11787620. DOI: 10.1016/j.isci.2024.111726.


References
1.
Rosenau F, Isenhardt S, Gdynia A, Tielker D, Schmidt E, Tielen P . Lipase LipC affects motility, biofilm formation and rhamnolipid production in Pseudomonas aeruginosa. FEMS Microbiol Lett. 2010; 309(1):25-34. DOI: 10.1111/j.1574-6968.2010.02017.x. View

2.
Verma N, Dollinger P, Kovacic F, Jaeger K, Gohlke H . The Membrane-Integrated Steric Chaperone Lif Facilitates Active Site Opening of Pseudomonas aeruginosa Lipase A. J Comput Chem. 2019; 41(6):500-512. DOI: 10.1002/jcc.26085. View

3.
Duong F, Bonnet E, Geli V, Lazdunski A, Murgier M, Filloux A . The AprX protein of Pseudomonas aeruginosa: a new substrate for the Apr type I secretion system. Gene. 2001; 262(1-2):147-53. DOI: 10.1016/s0378-1119(00)00541-2. View

4.
Mann E, Wozniak D . Pseudomonas biofilm matrix composition and niche biology. FEMS Microbiol Rev. 2012; 36(4):893-916. PMC: 4409827. DOI: 10.1111/j.1574-6976.2011.00322.x. View

5.
Cunrath O, Graulier G, Carballido-Lopez A, Perard J, Forster A, Geoffroy V . The pathogen optimizes the production of the siderophore pyochelin upon environmental challenges. Metallomics. 2020; 12(12):2108-2120. DOI: 10.1039/d0mt00029a. View